
Mr.Lohit B and Mr.Santosh Dept of CSE ,CEC Page 1

CANARA ENGINEERING COLLEGE
Benjanapadavu – 574219

Program: COMPUTER SCIENCE & ENGINEERING Course code:18CS53
Course Name: DATABASE MANAGEMENT SYSTEM

MODULE 5

Notes prepared by - (Name & Designation) : Mr.LOHIT B and Mr.SANTOSH

OBJECTIVE: Demonstrate the use of concurrency and transactions in database

OUTCOME: Explain the basic issues of transaction processing and concurrency control.

Contents include:

No. of Weblinks: 3

No. of University Qs and As: 8

Structure of Notes

 5.1. Introduction to Transaction Processing

 5.2. Transactions, Database Items, Read and Write Operations, and DBMS Buffers.

 5.3. Why Concurrency Control Is Needed(VTU Question)

 5.4 Why Recovery Is Needed

 5.5 Transaction and System Concepts(VTU Question-ACID Properties)

 5.6 Characterizing Schedules Based on Recoverability

 5.7 Characterizing Schedules Based on Recoverability

 5.8 Characterizing Schedules Based on Serializability

 5.9 Transaction Support in SQL(VTU Question)

 5.10 Two-Phase Locking(2PL) Techniques for Concurrency Control(VTU Question)

 5.11 Guaranteeing Serializability by Two-Phase Locking(VTU Question)

 5.12 Concurrency Control Based on Timestamp Ordering

 5.13 Recovery Concepts

 5.14 No-Undo/Redo Recovery Based On Deferred Update(VTU Question)

 5.15 Recovery Techniques Based On Immediate Update(VTU Question)

 5.15 Database Backup and Recovery from Catastrophic Failures(VTU Question)

Mr.Lohit B and Mr.Santosh Dept of CSE ,CEC Page 2

5. Introduction to Transaction Processing Concepts and Theory

The concept of transaction provides a mechanism for describing logical units of

database processing. Transaction processing systems are systems with large databases and

hundreds of concurrent users executing database transactions. Examples of such systems

include airline reservations, banking, credit card processing, online retail purchasing, stock

markets, supermarket checkouts, and many other applications.

 5.1. Introduction to Transaction Processing

In this section we discuss the concepts of concurrent execution of transactions and

recovery from transaction failures.

 Single-User versus Multiuser Systems

• One criterion for classifying a database system is according to the number of users who

can use the system concurrently.

• A DBMS is single-user if at most one user at a time can use the system, and it is multiuser

if many users can use the system—and hence access the database—concurrently.

• Single-user DBMSs are mostly restricted to personal computer systems; most other

DBMSs are multiuser.

• For example, an airline reservations system is used by hundreds of travel agents and

reservation clerks concurrently. Database systems used in banks, insurance agencies,

stock exchanges, supermarkets, and many other applications are multiuser systems. In

these systems, hundreds or thousands of users are typically operating on the database by

submitting transactions concurrently to the system.

Mr.Lohit B and Mr.Santosh Dept of CSE ,CEC Page 3

• Multiple users can access databases—and use computer systems—simultaneously because

of the concept of multiprogramming, which allows the operating system of the computer to

execute multiple programs—or processes—at the same time.

• A single central processing unit (CPU) can only execute at most one process at a time.

However, multiprogramming operating systems execute some commands from one

process, then suspend that process and execute some commands from the next process, and

so on. A process is resumed at the point where it was suspended whenever it gets its turn

to use the CPU again. Hence, concurrent execution of processes is actually interleaved, as

illustrated in Figure 21.1, which shows two processes, A and B, executing concurrently in

an interleaved fashion. Interleaving keeps the CPU busy when a process requires an input

or output (I/O) operation, such as reading a block from disk. The CPU is switched to

execute another process rather than remaining idle during I/O time. Interleaving also

prevents a long process from delaying other processes.

If the computer system has multiple hardware processors (CPUs), parallel processing of

multiple processes is possible, as illustrated by processes C and D in Figure 21.1.

 5.2. Transactions, Database Items, Read and Write Operations, and

DBMS Buffers

• A transaction is an executing program that forms a logical unit of database processing. A

transaction includes one or more database access operations—these can include insertion,

Mr.Lohit B and Mr.Santosh Dept of CSE ,CEC Page 4

deletion, modification, or retrieval operations.

• The database operations that form a transaction can either be embedded within an

application program or they can be specified interactively via a high-level query language

such as SQL.

• One way of specifying the transaction boundaries is by specifying explicit begin

transaction and end transaction statements in an application program; in this case, all

database access operations between the two are considered as forming one transaction.

• A single application program may contain more than one transaction if it contains several

transaction boundaries. If the database operations in a transaction do not update the

database but only retrieve data, the transaction is called a read-only transaction;

otherwise it is known as a read-write transaction.

• A database is basically represented as a collection of named data items. The size of a data

item is called its granularity. A data item can be a database record , but it can also be a

larger unit such as a whole disk block, or even a smaller unit such as an individual field

(attribute) value of some record in the database.

The basic database access operations that a transaction can include are as follows:

1) read_item(X). Reads a database item named X into a program variable. To simplify our

notation,we assume that the program variable is also named X.

2) write_item(X). Writes the value of program variable X into the database item

named X.

Executing a read_item(X) command includes the following steps:

1. Find the address of the disk block that contains item X.

2. Copy that disk block into a buffer in main memory (if that disk block is not already in some

main memory buffer). The size of the buffer is the same as the disk block size.

3. Copy item X from the buffer to the program variable named X.

Executing a write_item(X) command includes the following steps:

1. Find the address of the disk block that contains item X

2. Copy that disk block into a buffer in main memory (if that disk block is not already in some

main memory buffer).

Mr.Lohit B and Mr.Santosh Dept of CSE ,CEC Page 5

3. Copy item X from the program variable named X into its correct location in the buffer.

4. Store the updated disk block from the buffer back to disk (either immediately or at

some later point in time).

 5.3. Why Concurrency Control Is Needed

• Several problems can occur when concurrent transactions execute in an uncontrolled

manner. We illustrate some of these problems by referring to a much simplified airline

reservations database in which a record is stored for each airline flight.

• Each record includes the number of reserved seats on that flight as a named (uniquely

identifiable) data item, among other information. Figure 21.2(a) shows a transaction T1

that transfers N reservations from one flight whose number of reserved seats is stored in

the database item named X to another flight whose number of reserved seats is stored in

the database item named Y.

• Figure 21.2(b) shows a simpler transaction T2 that just reserves M seats on the first flight

(X) referenced in transaction T1.2

Next we discuss the types of problems we may encounter with these two simple transactions if

they run concurrently.

1) The Lost Update Problem. This problem occurs when two transactions that access the same

database items have their operations interleaved in a way that makes the value of some database

items incorrect.Suppose that transactions T1 and T2 are submitted at approximately the same

time, and suppose that their operations are interleaved as shown in Figure 21.3(a); then the final

value of item X is incorrect because T2 reads the value of X before T 1 changes it in the

database, and hence the updated value resulting from T1 is lost.For example,if X= 80 at the start

Mr.Lohit B and Mr.Santosh Dept of CSE ,CEC Page 6

(originally there were 80 reservations on the flight),N= 5 (T1 transfers 5 seat reservations from

the flight corresponding to X to the flight corresponding to Y), and M = 4 (T2 reserves 4 seats on

X),the final result should be X = 79.However,in the interleaving of operations shown in Figure

21.3(a), it is X = 84 because the update in T1 that removed the five seats from X was lost.

2) The Temporary Update (or Dirty Read) Problem. This problem occurs when one

transaction updates a database item and then the transaction fails for some reason .Meanwhile,

the updated item is accessed (read) by another transaction before it is changed back to its original

value. Figure 21.3(b) shows an example where T1 updates item X and then fails before

completion, so the system must change X back to its original value. Before it can do so, however,

transaction T2 reads the temporary value of X, which will not be recorded permanently in the

database because of the failure of T1.The value of item X that is read by T2 is called dirty data

because it has been created by a transaction that has not completed and committed yet; hence,

this problem is also known as the dirty read problem.

3) The Incorrect Summary Problem. If one transaction is calculating an aggregate summary

function on a number of database items while other transactions are updating some of these

items, the aggregate function may calculate some values before they are updated and others after

Mr.Lohit B and Mr.Santosh Dept of CSE ,CEC Page 7

they are updated. For example, suppose that a transaction T3 is calculating the total number of

reservations on all the flights; meanwhile, transaction T1 is executing. If the interleaving of

operations shown in Figure 21.3(c) occurs, the result of T3 will be off by an amount N because

T3 reads the value of X after N seats have been subtracted from it but reads the value of Y before

those N seats have been added to it.

4) The Unrepeatable Read Problem. Another problem that may occur is called unrepeatable

read, where a transaction T reads the same item twice and the item is changed by another

transaction Tbetween the two reads. Hence, T receives different values for its two reads of the

same item. This may occur, for example, if during an airline reservation transaction, a customer

inquires about seat availability on several flights. When the customer decides on a particular

flight, the transaction then reads the number of seats on that flight a second time before

completing the reservation ,and it may end up reading a different value for the item.

Mr.Lohit B and Mr.Santosh Dept of CSE ,CEC Page 8

 5.4 Why Recovery Is Needed

• Whenever a transaction is submitted to a DBMS for execution, the system is responsible

for making sure that either all the operations in the transaction are completed successfully

and their effect is recorded permanently in the database, or that the transaction does not

have any effect on the database or any other transactions.

• In the first case, the transaction is said to be committed, whereas in the second case, the

transaction is aborted. The DBMS must not permit some operations of a transaction T to

be applied to the database while other operations of T are not, because the whole

transaction is a logical unit of database processing.

• If a transaction fails after executing some of its operations but before executing all of

them, the operations already executed must be undone and have no lasting effect.

Types of Failures. Failures are generally classified as transaction, system, and media failures.

There are several possible reasons for a transaction to fail in the middle of execution:

1. A computer failure (system crash). A hardware, software, or network error occurs in the

computer system during transaction execution. Hardware crashes are usually media

failures—for example, main memory failure.

2. A transaction or system error. Some operation in the transaction may cause it to fail,

such as integer overflow or division by zero. Transaction failure may also occur

because of erroneous parameter values or because of a logical programming error.

Additionally, the user may interrupt the transaction during its execution.

3. Local errors or exception conditions detected by the transaction. During transaction

execution, certain conditions may occur that necessitate cancellation of the transaction.

For example, data for the transaction may not be found. An exception condition, such as

insufficient account balance in a banking database, may cause a transaction, such as a

fund withdrawal, to be canceled. This exception could be programmed in the

transaction itself

Mr.Lohit B and Mr.Santosh Dept of CSE ,CEC Page 9

4. Concurrency control enforcement. The concurrency control method may abort a

transaction because it violates serializability or it may abort one or more transactions

to resolve a state of deadlock among several transactions. Transactions aborted because of

serializability violations or deadlocks are typically restarted automatically at a later time

5. Disk failure. Some disk blocks may lose their data because of a read or write

malfunction or because of a disk read/write head crash. This may happen during a read or

a write operation of the transaction.

6. Physical problems and catastrophes. This refers to an endless list of problems that

includes power or air-conditioning failure, fire, theft, sabotage, overwriting disks or tapes

by mistake, and mounting of a wrong tape by the operator. Failures of types 1, 2, 3, and

4 are more common than those of types 5 or 6. Whenever a failure of type 1 through 4

occurs, the system must keep sufficient information to quickly recover from the failure.

Disk failure or other catastrophic failures of type 5 or 6 do not happen frequently; if they

do occur, recovery is a major task.

 5.5 Transaction and System Concepts

In this section we discuss additional concepts relevant to transaction processing.

 5.5.1 Transaction States and Additional Operations

A transaction is an atomic unit of work that should either be completed in its entirety or not

done at all. For recovery purposes, the system needs to keep track of when each transaction

starts, terminates, and commits or aborts. Therefore, the recovery manager of the DBMS needs to

keep track of the following operations:

◼ BEGIN TRANSACTION: This marks the beginning of transaction execution.

◼ READ or WRITE: These specify read or write operations on the database items that are

executed as part of a transaction.

◼ END TRANSACTION: This specifies that READ and WRITE transaction

operations have ended and marks the end of transaction execution. At this point it may be

necessary to check whether the changes introduced by the transaction can be permanently

applied to the database (committed) or whether the transaction has to be aborted

because it violates serializability or for some other reason.

Mr.Lohit B and Mr.Santosh Dept of CSE ,CEC Page 10

◼ COMMIT TRANSACTION: This signals a successful end of the transaction so that

any changes (updates) executed by the transaction can be safely committed to the

database and will not be undone.

◼ ROLLBACK (or ABORT): This signals that the transaction has ended unsuccessfully,

so that any changes or effects that the transaction may have applied to the database must

be undone.

Figure 21.4 shows a state transition diagram that illustrates how a transaction moves through its

execution states .A transaction goes into an active state immediately after it starts execution,

where it can execute its READ and WRITE operations. When the transaction ends, it moves to

the partially committed state.

At this point, some recovery protocols need to ensure that a system failure will not result in an

inability to record the changes of the transaction permanently (usually by recording changes in

the system log). Once this check is successful, the transaction is said to have reached its commit

point and enters the committed state. When a transaction is committed, it has concluded its

execution successfully and all its changes must be recorded permanently in the database, even if

a system failure occurs.

However, a transaction can go to the failed state if one of the checks fails or if the transaction is

aborted during its active state. The transaction may then have to be rolled back to undo the

effect of its WRITE operations on the database.

The terminated state corresponds to the transaction leaving the system. The transaction

information that is maintained in system tables while the transaction has been running is

removed when the transaction terminates. Failed or aborted transactions may be restarted later—

Mr.Lohit B and Mr.Santosh Dept of CSE ,CEC Page 11

either automatically or after being resubmitted by the user—as brand new transactions.

 5.5.2 The System Log

• To be able to recover from failures that affect transactions, the system maintains a log to

keep track of all transaction operations that affect the values of database items, as well as

other transaction information that may be needed to permit recovery from failures.

• The following are the types of entries—called log-records—that are written to the log file

and the corresponding action for each log record. In these entries, T refers to a unique

transaction-id that is generated automatically by the system for each transaction and that is

used to identify each transaction:

1. [start transaction, T]: Indicates that the transaction T has started execution.

2. [write i tem, T, X, old value, new value]: Indicates that t ransact ion T

has changed the value of database item X from old value to new value.

3. [read item, T, X]: Indicates that transaction T has read the value of database item X.

4. [commit, T]. Indicates that transaction T has completed successfully, and affirms that

its effect can be committed (recorded permanently) to the database.

5. [abort, T]. Indicates that transaction T has been aborted.

 5.5.3 Commit Point of a Transaction

A transaction T reaches its commit point when all its operations that access the database have

been executed successfully and the effect of all the transaction operations on the database have

been recorded in the log. Beyond the commit point, the transaction is said to be committed, and

its effect must be permanently recorded in the database. The transaction then writes a commit

record [commit, T] into the log. If a system failure occurs, we can search back in the log for all

transactions T that have written a [start_transaction, T] record into the log but have not written

their [commit, T] record yet; these transactions may have to be rolled back to undo their effect on

the database during the recovery process. Transactions that have written their commit record in

the log must also have recorded all their

Mr.Lohit B and Mr.Santosh Dept of CSE ,CEC Page 12

WRITEoperations in the log,so their effect on the database can be redone from the log records.

5.5.4 Desirable Properties of Transactions

Transactions should possess several properties, often called the ACID properties; they

should be enforced by the concurrency control and recovery methods of the DBMS.

The following are the ACID properties:

◼ Atomicity: A transaction is an atomic unit of processing. It should either be performed

in its entirety or not performed at all.

◼ Consistency preservation: A transaction should be consistency preserving, meaning

that if it is completely executed from beginning to end without interference from other

transactions, it should take the database from one consistent state to another.

■ Isolation: A transaction should appear as though it is being executed in isolation

from other transactions, even though many transactions are executing concurrently. That

is, the execution of a transaction should not be interfered with by any other transactions

executing concurrently.

◼ Durability or permanency: The changes applied to the database by a committed

transaction must persist in the database. These changes must not be lost because of any

failure.

❖ The atomicity property requires that a transaction is executed to completion. It is the

responsibility of the transaction recovery subsystem of a DBMS to ensure atomicity.

+ If a transaction fails to complete for some reason, such as a system crash in the midst of

transaction execution, the recovery technique must undo any effects of the transaction on

the database. On the other hand, write operations of a committed transaction must be

eventually written to disk.

❖ The preservation of consistency is generally considered to be the responsibility of the

programmers who write the database programs and of the DBMS module that enforces

integrity constraints.

Mr.Lohit B and Mr.Santosh Dept of CSE ,CEC Page 13

+ A database state is a collection of all the stored data items (values) in the database at a

given point in time. A consistent state of the database satisfies the constraints specified in

the schema as well as any other constraints on the database that should hold.

❖ A database program should be written in a way that guarantees that, if the database is in a

consistent state before executing the transaction, it will be in a consistent state after the

complete execution of the transaction, assuming that no interference with other transactions

occurs.

 5.6 Characterizing Schedules Based on Recoverability

When transactions are executing concurrently in an interleaved fashion, then the order of execution

of operations from all the various transactions is known as a schedule (or history).

 Schedules (Histories) of Transactions

A schedule (or history) S of n transactions T1, T2, ..., Tn is an ordering of the operations

of the transactions subject to the constraint that, for each transaction Ti that participates in S, the

operations of Ti in S must appear in the same order in which they occur in Ti. Note, however,

that operations from other transactions Tj can be interleaved with the operations of Ti in S. For

now, consider the order of operations in S to be a total ordering, although it is possible

theoretically to deal with schedules whose operations form partial orders.

Sa: (X) ; r2 (X) ; (X) ; (Y) ; w2 (X) ; (Y) ;

Similarly, the schedule for Figure 21.3(b), which we call Sb, can be written as follows, if we

assume that transaction T1 aborted after its read_item(Y) operation:

Sb: r1 (X) ; w1 (X) ; r2 (X) ; w2 (X) ;(Y) ; al;

Conflicting Operations in a Schedule: Two operations in a schedule are said to conflict if

they satisfy all three of the following conditions:

(1) they belong to different transactions

(2) they access the same item X and

(3) at least one of the operations is a write_item(X).

Mr.Lohit B and Mr.Santosh Dept of CSE ,CEC Page 14

For example, in schedule Sc, the operations ri(X) and w2(X) conflict, as do the operations r2(X)

and wi(X), and the operations wi(X) and w2(X). But the operations ri(X) and r2(X) do not

conflict, since they are both read distinct data items X and Y; and the operations ri(X) and

wi(X) do not conflict because they belong to the same transaction.

A schedule S of n transactions T1, T2, ..., Tn, is said to be a complete schedule if the following

conditions hold:

1. The operations in S are exactly those operations in T1, T2, ..., Tn, including a commit

or abort operation as the last operation for each transaction in the schedule.

2. For any pair of operations from the same transaction Ti, their order of appearance in

S is the same as their order of appearance in Ti.

3. For any two conflicting operations, one of the two must occur before the other in the

schedule.

 5.7 Characterizing Schedules Based on Recoverability

• A transaction T reads from transaction T' in a schedule S if some item X is first written

by T' and later read by T. In addition, T should not have been aborted before T reads

item X, and there should be no transactions that write X after T' writes it and before T

reads it (unless those transactions, if any, have aborted before T reads X).

• If sufficient information is kept (in the log), a recovery algorithm can be devised for any

recoverable schedule.

❖ The (partial) schedules Sc, and Sb from are both recoverable, since they satisfy the above

definition. Consider the schedule S, given below, which is the same as schedule Sa except

that two commit operations have been added to Sa:

S a ' : r1 (X) ; r2 (X) ; w1 (X) ; r1(Y) ; w2 (X) ; c2; w1 (Y) ; ci ;

Sc,' is recoverable, even though it suffers from the lost update problem; this problem is

handled by serializability theory.

Consider the two (partial) schedules Sy, and Sd:

S c : r1 (X) ; w1 (X) ; r2 (X) ; r1 (Y) ; w2 (X) ; c2 ; a l ;

Mr.Lohit B and Mr.Santosh Dept of CSE ,CEC Page 15

Sd : r1 (X) ; w1 (X) ; r2 (X) ; r1(Y) ; w2 (X) ; w 1 (Y)

; c1 ; c2; Se : r1 (x) ; w1 (X) ; r2 (X) ; r1(Y) ; w2 (X) ; (Y) ; al ; a2 ;

5, is not recoverable because T2 reads item X from T1, but T2 commits before T i

commits. The

problem occurs if T1 aborts after the c2 operation in Sc; then the value of X that T2 read is no

longer

valid and T2 must be aborted after it is committed, leading to a schedule that is not

recoverable. For

 5.8 Characterizing Schedules Based on Serializability

In the previous section, we characterized schedules based on their recoverability properties.

Now we characterize the types of schedules that are always considered to be correct when

concurrent transactions are executing .Such schedules are known as serializable schedules.

Suppose that two users—for example, two airline reservations agents—submit to the DBMS

transactions T1 and T2 in Figure 21.2 at approximately the same time. If no interleaving of

operations is permitted, there are only two possible outcomes:

1. Execute all the operations of transaction T1 (in sequence) followed by all the

operations of transaction T2 (in sequence).

2. Execute all the operations of transaction T2 (in sequence) followed by all the

operations of transaction T1 (in sequence).

These two schedules—called serial schedules—are shown in Figure 21.5(a) and (b), respectively.

If interleaving of operations is allowed, there will be many possible orders in which the system

can execute the individual operations of the transactions. Two possible schedules are shown in

Figure 21.5(c). The concept of serializability of schedules is used to identify which schedules

are correct when transaction executions have interleaving of their operations in the schedules.

This section defines serializability and discusses how it may be used in practice.

Mr.Lohit B and Mr.Santosh Dept of CSE ,CEC Page 16

 Serial, Nonserial, and Conflict-Serializable Schedules

Schedules A and B in Figure 21.5(a) and (b) are called serial because the operations of each

transaction are executed consecutively, without any interleaved operations from the other

transaction. In a serial schedule,entire transactions are performed in serial order: T1 and then T2

in Figure 21.5(a),and T2 and then T1 in Figure 21.5(b). Schedules C and D in Figure 21.5(c) are

called nonserial because each sequence interleaves operations from the two transactions.

Formally, a schedule S is serial if, for every transaction T participating in the schedule, all

the operations of Tare executed consecutively in the schedule; otherwise,the schedule is called

nonserial. Therefore, in a serial schedule, only one transaction at a time is active—the commit

(or abort) of the active transaction initiates execution of the next transaction. No interleaving

occurs in a serial schedule.

The problem with serial schedules is that they limit concurrency by prohibiting

interleaving of operations. In a serial schedule, if a transaction waits for an I/O operation to

complete, we cannot switch the CPU processor to another transaction, thus wasting valuable

CPU processing time. Additionally, if some transaction T is quite long, the other transactions

must wait for T to complete all its operations before starting. Hence, serial schedules are

considered unacceptable in practice.

consider the schedules in Figure 21.5, and assume that the initial values of database items

are X = 90 and Y = 90 and that N = 3 and M = 2. After executing transactions T1 and T2,we

would expect the database values to be X = 89 and Y= 93,according to the meaning of the

transactions.Sure enough,executing either of the serial schedules A or B gives the correct results.

Now consider the nonserial schedules C and D.Schedule C (which is the same as Figure 21.3(a))

gives the results X= 92 and Y= 93,in which the Xvalue is erroneous,whereas schedule D gives

the correct results.

Schedule C gives an erroneous result because of the lost update problem. Transaction T2 reads

the value of X before it is changed by transaction T1,so only the effect of T2 on X is reflected in

the database.The effect of T1 on Xislost,overwritten by T2,leading to the incorrect result for item

X.However,some nonserial schedules give the correct expected result, such as schedule D. We

Mr.Lohit B and Mr.Santosh Dept of CSE ,CEC Page 17

would like to determine which of the nonserial schedules always give a correct result and which

may give erroneous results.The concept used to characterize schedules in this manner is that of

serializability of a schedule

The definition of serializable schedule is as follows: A schedule S of n transactions is

serializable if it is equivalent to some serial schedule of the same n transactions.

There are several ways to define schedule equivalence. Two schedules are called result

equivalent if they produce the same final state of the database. However, two different schedules

may accidentally produce the same final state. For example, in Figure 21.6, schedules S1 and S2

will produce the same final database state if they execute on a database with an initial value of

X= 100;however, for other initial values of X, the schedules are not result equivalent.

The definition of conflict equivalence of schedules is as follows: Two schedules are said to be

conflict equivalent if the order of any two conflicting operations is the same in both schedules.

Two operations in a schedule are said to conflict if they belong to different transactions, access

the same database item, and either both are write_item operations or one is a write_item and the

other a read_item.

Using the notion of conflict equivalence, we define a schedule S to be conflict serializable if it

is (conflict) equivalent to some serial schedule S. In such a case, we can reorder the

nonconflicting operations in S until we form the equivalent serial schedule S.According to this

definition, schedule D in Figure 21.5(c) is equivalent to the serial schedule A in Figure 21.5(a).

Schedule C in Figure 21.5(c) is not equivalent to either of the two possible serial schedules A

and B, and hence is not serializable.

Mr.Lohit B and Mr.Santosh Dept of CSE ,CEC Page 18

 Testing for Conflict Serializability of a Schedule

There is a simple algorithm for determining whether a particular schedule is conflict serializable or

not.

Algorithm 21.1 can be used to test a schedule for conflict serializability. The algorithm looks at

only the read_item and write_item operations in a schedule to construct a precedence graph (or

serialization graph), which is a directed graph G = (N, E) that consists of a set of nodes N=

{T1,T2,...,Tn } and a set of directed edges E= {e1, e2,...,em }. There is one node in the graph for

each transaction Ti in the schedule. Each edge ei in the graph is of the form (Tj→Tk),1 ≤j≤n,1

≤kfn, where Tj is the starting node of ei and Tk is the ending node of ei. Such an edge from node

Tj to node Tk is created by the algorithm if one of the operations in Tj appears in the schedule

before some conflicting operation in Tk.

The precedence graph is constructed as described in Algorithm 21.1. If there is a cycle in the

precedence graph, schedule S is not (conflict) serializable; if there is no cycle, S is serializable.

Mr.Lohit B and Mr.Santosh Dept of CSE ,CEC Page 19

 How Serializability Is Used for Concurrency Control

A serializable schedule gives the benefits of concurrent execution without giving up any

correctness.In practice,it is quite difficult to test for the serializability of a schedule. The

interleaving of operations from concurrent transactions—which are usually executed as

processes by the operating system—is typically determined by the operating system

scheduler,which allocates resources to all processes. Factors such as system load, time of

transaction submission, and priorities of processes contribute to the ordering of operations in a

schedule. Hence,it is difficult to determine how the operations of a schedule will be interleaved

beforehand to ensure serializability.

 View Equivalence and View Serializability

view equivalence :less restrictive definition of equivalence of schedules is called view

equivalence.

view serializability: Two schedules S and Sare said to be view equivalent if the

following three conditions hold:

Mr.Lohit B and Mr.Santosh Dept of CSE ,CEC Page 20

A schedule S is said to be view serializable if it is view equivalent to a serial schedule.

The definitions of conflict serializability and view serializability are similar if a condition

known as the constrained write assumption (or no blind writes) holds on all transactions in the

schedule.

A blind write is a write operation in a transaction T on an item X that is not dependent on

the value of X,so it is not preceded by a read of X in the transaction T.

The definition of view serializability is less restrictive than that of conflict serializability

under the unconstrained write assumption, where the value written by an operation wi(X) in Ti

can be independent of its old value from the database.This is possible when blind writesare

allowed,and it is illustrated by the following schedule Sg of three transactions T1: r1(X); w1(X);

T2: w2(X); and T3: w3(X):

Sg: r1(X); w2(X); w1(X); w3(X); c1; c2; c3;

In Sg the operations w2(X) and w3(X) are blind writes, since T2 and T3 do not read the value of

X. The schedule Sg is view serializable, since it is view equivalent to the serial schedule T1, T2,

T3. However, Sg is not conflict serializable, since it is not conflict equivalent to any serial

schedule.

 Other Types of Equivalence of Schedules

Serializability of schedules is sometimes considered to be too restrictive as a condition for

ensuring the correctness of concurrent executions. Some applications can produce schedules that

are correct by satisfying conditions less stringent than either conflict serializability or view

serializability.An example is the type of transactions known as debit-credit transactions—for

example, those that apply deposits and withdrawals to a data item whose value is the current

balance of a bank account. The semantics of debit-credit operations is that they update the value

of a data item X by either subtracting from or adding to the value of the data item. Because

Mr.Lohit B and Mr.Santosh Dept of CSE ,CEC Page 21

addition and subtraction operations are commutative— that is, they can be applied in any order—

it is possible to produce correct schedules that are not serializable. For example,consider the

following transactions,each of which may be used to transfer an amount of money between two

bank accounts:

T1: r1(X); X := X−10; w1(X); r1(Y); Y := Y + 10; w1(Y);

T2: r2(Y); Y := Y−20; w2(Y); r2(X); X := X + 20; w2(X);

Consider the following nonserializable schedule Sh for the two

transactions: Sh: r1(X); w1(X); r2(Y); w2(Y); r1(Y); w1(Y); r2(X);

w2(X);

With the additional knowledge, or semantics, that the operations between each ri(I) and wi(I) are

commutative,we know that the order of executing the sequences consisting of (read,update,write)

is not important as long as each (read,update,write) sequence by a particular transaction Ti on a

particular item I is not interrupted by conflicting operations. Hence, the schedule Sh is

considered to be correct even though it is not serializable.

 5.9 Transaction Support in SQL

❖ A transaction is a logical unit of work and is guaranteed to be atomic. A single SQL

statement is always considered to be atomic—either it completes execution without an

error or it fails and leaves the database unchanged.

❖ With SQL, there is no explicit Begin Transaction statement. Transaction initiation

is done implicitly when particular SQL statements are encountered. But every

transaction must have an explicit end statement, which is either a COMMIT or a

ROLLBACK.

❖ Transaction characteristics are specified by a SET TRANSACTION statement in

SQL. The characteristics are the access mode, the diagnostic area size, and the isolation

level.

❖ The access mode can be specified as READ ONLY or READ WRITE. The default is

READ WRITE, unless the isolation level of READ UNCOMMITTED is specified

(see below), in which case READ ONLY is assumed. A mode, of READ WRITE

allows select, update, insert, delete, and create commands to be executed. A mode of

READ ONLY is for data retrieval.

Mr.Lohit B and Mr.Santosh Dept of CSE ,CEC Page 22

❖ The diagnostic area size option, DIAGNOSTIC SIZE n, specifies an integer value

n, which indicates the number of conditions that can be held simultaneously in the

diagnostic area These conditions supply feedback information (errors or exceptions) to

the user or program on the n most recently executed SQL statement.

+ The isolation level option is specified using the statement ISOLATION LEVEL

<is olat ion>, where the value for <isolation> can be READ UNCOMMITTED, READ

COMMITTED, REPEATABLE READ, or SERIALIZABLE. The default isolation

level is SERIALIZABLE, although some systems use READ COMMITTED as their

default. The use of the term SERIALIZABLE is based on not allowing violations that

cause dirty read, unrepeatable read, and phantoms.

❖ If a transaction executes at a lower isolation level than SERIALIZABLE, then one or

more of the following three violations may occur:

1. Dirty read: A transaction Ti may read the update of a transaction T2, which has not

yet committed. If T2 fails and is aborted, then T1 would have read a value that does not

exist and is incorrect.

2. Nonrepeatable read: A transaction Ti may read a given value from a table. If another

transaction T2 later updates that value and T1 reads that value again, Ti will see a

different value.

Phantoms: A transaction T1 may read a set of rows from a table based on some condition

specified in the SQL WHERE-clause. Now suppose that a transaction T2 inserts a new row r

that also satisfies the WHERE-clause condition used in T1, into the table used by T1. The record r

is called a phantom that a violation is possible and an entry of No indicates that it is not possible.

READ UNCOMMITTED is

the most forgiving, and SERIALIZABLE is the most restrictive in that it avoids all three of the

problems mentioned above.

Mr.Lohit B and Mr.Santosh Dept of CSE ,CEC Page 23

The above transaction consists of first inserting a new row in the EMPLOYEE table and then

updating the salary of all employees who work in department 2.If an error occurs on any of the

SQL statements, the entire transaction is rolled back. This implies that any updated salary (by

this transaction) would be restored to its previous value and that the newly inserted row would be

removed.

Concurrency Control inDatabases

In this chapter we discuss a number of concurrency control techniques that are used to ensure

the non interference or isolation property of concurrently executing transactions. Most of these

techniques ensure serializability of schedules.

 5.10 Two-Phase Locking(2PL) Techniques for Concurrency Control

Some of the main techniques used to control concurrent execution of transactions are based on

the concept of locking data items. A lock is a variable associated with a data item that

describes the status of the item with respect to possible operations that can be applied to it.

 Types of Locks and System Lock Tables

1. Types of Locks and System Lock Tables:

Types of locks used in concurrency control are binary locks, shared/exclusive locks—also

known as read/write locks and a certify lock that improves performance of locking protocols.

Binary Locks:

◼ A binary lock can have two states or values: locked and unlocked (or 1 and 0).

◼ A distinct lock is associated with each database item X. If the value of the lock on X is 1,

item X cannot be accessed by a database operation that requests the item. If the value of the

lock on X is 0, the item can be accessed when, requested, and the lock value is changed to 1.

◼ The current value (or state) of the lock associated with item X is referred to as lock (X).

◼ Two operations, I ock_item and unlock_item, are used with binary locking.

Mr.Lohit B and Mr.Santosh Dept of CSE ,CEC Page 24

◼ A transaction requests access to an item X by first issuing a lock_it em (X) operation. If

LOCK (X) = 1, the transaction is forced to wait. If LOCK (X) = 0, the transaction locks

the item) and the transaction is allowed to access item X.

◼ When the transaction is through using the item, it issues an unlock_item (X) operation,

which sets LOCK (X) back to 0 (unlocks the item) so that X may be accessed by other

transactions. Hence, a binary lock enforces mutual exclusion on the data item.

.

If the simple binary locking scheme described here is used, every transaction must obey the

following rules:

Shared/Exclusive (or Read/Write) Locks: The preceding binary locking scheme is too

restrictive for database items because at most, one transaction can hold a lock on a given

item. We should allow several transactions to access the same item X if they all access X for

reading purposes only. This is because read operations on the same item by different

transactions are not conflicting. However,if a transaction is to write an item X,it must have

Mr.Lohit B and Mr.Santosh Dept of CSE ,CEC Page 25

exclusive access to X.

For this purpose, a different type of lock called a multiple-mode lock is used. In this scheme—

called shared/exclusive or read/write locks—there are three locking operations:

read_lock(X), write_lock(X), and unlock(X). A lock associated with an item X, LOCK(X),

now has three possible states: read-locked, write-locked, or unlocked. A read-locked item is also

called share-locked because other transactions are allowed to read the item, whereas a write-

locked item is called exclusive-locked because a single transaction exclusively holds the lock on

the item.

When we use the shared/exclusive locking scheme, the system must enforce the following rules:

1. A transaction T must issue the operation read_lock(X) or write_lock(X) before any

read_item(X) operation is performed in T.

2. A transaction T must issue the operation write_lock(X) before any write_item(X)

operation is performed in T.

3. A transaction T must issue the operation unlock(X) after all read_item(X) and

write_item(X) operations are completed in T.

4. A transaction T will not issue a read_lock(X) operation if it already holds a read (shared) lock

or a write (exclusive) lock on item X. This rule may be relaxed,as we discuss shortly.

5. A transaction T will not issue a write_lock(X) operation if it already holds a read (shared)

lock or write (exclusive) lock on item X.This rule may also be relaxed,as we discuss shortly.

6. A transaction T will not issue an unlock(X) operation unless it already holds a read (shared)

lock or a write (exclusive) lock on item X.

Conversion of Locks. Sometimes it is desirable to relax conditions 4 and 5 in the preceding list

in order to allow lock conversion; that is, a transaction that already holds a lock on item X is

allowed under certain conditions to convert the lock from one locked state to another. For

example, it is possible for a transaction T to issue a read_lock(X) and then later to upgrade the

lock by issuing a write_lock(X) operation. If T is the only transaction holding a read lock on X

at the time it issues the write_lock(X) operation, the lock can be upgraded; otherwise, the

transaction must wait. It is also possible for a transaction T to issue a write_lock(X) and then

later to downgrade the lock by issuing a read_lock(X) operation

Mr.Lohit B and Mr.Santosh Dept of CSE ,CEC Page 26

 5.11 Guaranteeing Serializability by Two-Phase Locking

❖ A transaction is said to follow the two-phase locking protocol if all locking operations

(readlock, write_lock) precede the first unlock operation in the transaction.

❖ Such a transaction can be divided into two phases:

− an expanding or growing (first) phase, during which new locks on items can be

acquired but none can be released;

− a shrinking (second) phase, during which existing locks can be released but no new

locks can

be acquired.

If lock conversion is allowed, then upgrading of locks (from read-locked to write-locked)

must be done during the expanding phase, and downgrading of locks (from write-locked to

read-locked) must be done in the shrinking phase.

❖ Transactions Ti and T2 in Figure 12(a) do not follow the two-phase locking protocol

because the write lock (X) operation follows the unlock (Y) operation in T1,

and similarly the write lock (Y) operation follows the unlock (X) operation in T2.

Mr.Lohit B and Mr.Santosh Dept of CSE ,CEC Page 27

❖ If two-phase locking is enforced, the transactions can be rewritten as T1' and T2', as shown in

Figure 13. Now, the schedule shown in Figure 12(c) is not permitted for Ti' and T2' (with

their modified order of locking and unlocking operations) because T i' will issue its

write_lock (X) before it unlocks item Y; consequently, when T2' issues its read_lock

(X) , it is forced to wait until Ti' releases the lock by issuing unlock (X) in the schedule.

However, this can lead to deadlock.

Variations(Types of two phase locking) of two-phase locking (2PL).

Basic, Conservative, Strict, and Rigorous Two-Phase Locking:

❖ Conservative 2PL (or static 2PL) requires a transaction to lock all the items it accesses

before the transaction begins execution, by predeclaring it's read-set and write-set.

❖ The read-set of a transaction is the set of all items that the transaction reads, and the write-

set is the set of all items that it writes. If any of the predeclared items needed cannot be

locked, the transaction does not lock any item; instead, it waits until all the items are

available for locking.

❖ Conservative 2PL is a deadlock-free protocol. But it is difficult to use in practice because of

the need to predeclare the read-set and write-set, which is not possible in some situations.

•:• Strict 2PL guarantees strict schedules where a transaction T does not release any of its

exclusive (write) locks until after it commits or aborts. Hence, no other transaction can read

or write an item that is written by T unless T has committed, leading to a strict schedule for

Mr.Lohit B and Mr.Santosh Dept of CSE ,CEC Page 28

recoverability.

❖ Strict 2PL is not deadlock-free.

❖ Rigorous 2PL also guarantees strict schedules. In this variation, a transaction T does not

release any of its locks (exclusive or shared) until after it commits or aborts, and so it is

easier to implement than strict 2PL.

❖ Difference between strict and rigorous 2PL: the former holds write-locks until it commits,

whereas the latter holds all locks (read and write).

❖ Difference between conservative and rigorous 2PL: the former must lock all its items

before it starts, so once the transaction starts it is in its shrinking phase; the latter does not

unlock any of its items until after it terminates (by committing or aborting), so the

transaction is in its expanding phase until it ends.

❖ Usually the concurrency control subsystem itself is responsible for generating the read

lock and w r i t e lock requests .

 Dealing with Deadlock and Starvation

❖ Deadlock occurs when each transaction T in a set of two or more transactions is waiting for

some item that is locked by some other transaction T' in the set. Hence, each transaction in

the set is in a waiting queue, waiting for one of the other transactions in the set to release

the lock on an item. But because the other transaction is also waiting, it will never release

the lock.

❖ A simple example is shown in Figure 14(a), where the two transactions T1' and T2' are

deadlocked in a partial schedule; Ti' is in the waiting queue for X, which is locked by T2',

whereas T2' is in the waiting queue for Y, which is locked by Ti'. Meanwhile, neither T1'

nor T2' nor any other transaction can access items X and Y.

Mr.Lohit B and Mr.Santosh Dept of CSE ,CEC Page 29

• Conservative two-phase locking requires that every transaction lock all the items it needs in

advance (which is generally not a practical assumption)—if any of the items cannot be

obtained, none of the items are locked. Rather, the transaction waits and then tries again to

lock all the items it needs.This solution further limits concurrency.

❖ A second protocol, which also limits concurrency, involves ordering all the items in the

database and making sure that a transaction that needs several items will lock them

according to that order. This requires that the programmer (or the system) is aware of the

chosen order of the items, which is also not practical in the database context.

❖ Some of the deadlock prevention techniques use the concept of transaction timestamp

TS(T'), which is a unique identifier assigned to each transaction. The timestamps are

typically based on the order in which transactions are started; hence, if transaction Ti starts

before transaction T2, then

TS (T i) < TS (T2).

The older transaction (which starts first) has the smaller timestamp value.

❖ Two schemes that prevent deadlock are called wait -die and wound-wait.

Suppose that transaction T, tries to lock an item X but is not able to because X is locked

by some other transaction Tj with a conflicting lock. The rules followed by these schemes

are:

Mr.Lohit B and Mr.Santosh Dept of CSE ,CEC Page 30

◼ Wait-die. If TS (T1) < TS (Ti), then (T, older than. T j) T, is allowed to wait;

otherwise (Ti younger than Tj) abort I', (T1 dies) and restart it later with the same

timestamp.

◼ Wound-wait. If TS (Ti) < TS (Ti) , then (T, older than Tj) abort T1 (T, wounds Tj) and

restart it

later with the same timestamp; otherwise (Ti younger than Tj) T, is allowed to wait.

Deadlock Detection:

❖ In deadlock detection, the system checks if a state of deadlock actually exists. This can

happen if different transactions rarely access the same items at the same time, or if

transactions are short and each transaction locks only a few items, or if the transaction load

is light.

❖ If transactions are long and each transaction uses many items, or if the transaction load is

heavy, it may be advantageous to use a deadlock prevention scheme.

❖ A simple way to detect a state of deadlock is for the system to construct and maintain a

wait-for graph. One node is created in the wait-for graph for each transaction that is

currently executing. Whenever a transaction Ti is waiting to lock an item X that is currently

locked by a transaction Tr a directed edge (T, TI) is created in the wait-for graph. When Ti

releases the lock(s) on the items that

Ti was waiting for, the directed edge is dropped from the wait-for graph. A state of

deadlock occurs if and only if the wait-for graph has a cycle.

This approach has the problem of determining when the system should check for a deadlock.

It can be checked for a cycle every time an edge is added to the wait-for graph, but this may

cause excessive overhead. Criteria such as the number of currently executing transactions or

the period of time several transactions have been waiting to lock items may be used instead

to check for a cycle.

Figure 22.5(b) shows the wait-for graph for the (partial) schedule shown in Figure 14 (a).

If the system is in a state of deadlock, some of the transactions causing the deadlock must

be aborted. Choosing which transactions to abort is known as victim selection. The

algorithm for victim selection should

Mr.Lohit B and Mr.Santosh Dept of CSE ,CEC Page 31

the directed edge is dropped from the wait-for graph. We have a state of deadlock if and only if

the wait-for graph has a cycle.

Figure 22.5(b)(below figure) shows the wait-for graph for the (partial) schedule shown in Figure

22.5(a).

 5.12 Concurrency Control Based on Timestamp Ordering

A different approach that guarantees serializability involves using transaction timestamps to

order transaction execution for an equivalent serial schedule. we discuss how serializability is

enforced by ordering transactions based on their timestamps.

 Timestamps

 A timestamp is a unique identifier created by the DBMS to identify a transaction.

Timestamp values are assigned in the order in which the transactions are submitted to the

system, so a timestamp can be thought of as the transaction start time.

❖ Concurrency control techniques based on timestamp ordering do not use locks. Hence,

deadlocks cannot occur.

❖ Timestamps can be generated in several ways.

◼ Use a counter that is incremented each time its value is assigned to a

transaction. The transaction timestamps are numbered 1, 2, 3, ... in this scheme.

A computer counter has a finite maximum value, so the system must periodically

Mr.Lohit B and Mr.Santosh Dept of CSE ,CEC Page 32

reset the counter to zero when no transactions are executing for some short period of

time.

◼ Use the current date/time value of the system clock and ensure that no two

timestamp values are generated during the same tick of the clock.

The Timestamp Ordering Algorithm for Coneurrency Control:

❖ This scheme enforces the equivalent serial order on the transactions based on their

timestamps.

❖ A schedule in which the transactions participate is then serializable, and the only

equivalent serial schedule permitted has the transactions in order of their timestamp values.

This is called timestamp ordering (TO).

❖ Timestamp ordering differs from 2PL, where a schedule is serializable by being

equivalent to some serial schedule allowed by the locking protocols. In ''timestamp

ordering, the schedule is equivalent to the particular serial order corresponding to the order

of the transaction timestamps.

❖ The algorithm allows interleaving of transaction operations, but it must ensure that for each

pair of conflicting operations in the schedule, the order in which the i tem is accessed

must follow the timestamp order. To do this, the algorithm associates with each database

item X two timestamp (TS) values:

1. read TS (X) . The read timestamp of item X is the largest timestamp among all the

timestamps of transactions that have successfully read item X—that is, read TS (X) =

TS (T), where T is the youngest transaction that has read X successfully.

2. write TS (X). The write timestamp of item X is the largest of all the timestamps of

transactions that have successfully written item X—that is, write_TS (X) = TS (T),

where T is the youngest transaction that has written X successfully. Based on the

algorithm, T will also be the last transaction to write item X.

1. Whenever a transaction T issues a write item (X) operation, the following check is

performed:

Mr.Lohit B and Mr.Santosh Dept of CSE ,CEC Page 33

a. If read TS (X) > TS (T) or if write TS (X) > TS (T) , then abort and roll

back T and reject the operation. This should be done because some younger

transaction with a timestamp greater than TS (T) —and hence after T in the

timestamp ordering—has already read or written the value of item X before T had a

chance to write X, thus violating the timestamp ordering.

b. If the condition in part (a) does not occur, then execute the write_item (X)

operation of T and set write TS (X) to TS (T) .

2. Whenever a transaction T issues a read_item(X) operation the following check is performed:

a. If write TS (X) > TS (T) , then abort and roll back T and reject the operation. This

should be done because some younger transaction with timestamp greater than TS

(T) —and hence after T in the timestamp ordering—has already written the value of

item X before T had a chance to read X.

b. If write TS (X) < TS (T), then execute the read_item(X) operation of T

and set read TS (X) to the larger of TS (T) and the current read TS (X) .

Strict Timestamp Ordering (TO): A variation of basic TO called strict TO ensures that the

schedules are both strict (for easy recoverability) and (conflict) serializable. In this variation, a

transaction T that issues a read_item(X) or write_item(X) such that TS(T) > write_TS(X) has its

read or write operation delayed until the transaction Tthat wrote the value of X (hence TS(T) =

write_TS(X)) has committed or aborted. To implement this algorithm, it is necessary to simulate

the locking of an item X that has been written by transaction Tuntil Tis either committed or

aborted. This algorithm does not cause deadlock, since T waits for Tonly if TS(T) > TS(T).

Thomas's Write Rule: A modification of the basic TO algorithm, known as Thomas's write rule,

does not enforce conflict serializability, but it rejects fewer write operations by modifying

the checks for the write item (X) operation as follows:

1. If read TS (X) > TS (T) , then abort and roll back T and reject the operation.

2. If write TS (X) > TS (T), then do not execute the write operation but continue

processing. This is because some transaction with timestamp greater than TS (T) —

and hence after T in the timestamp ordering—has already written the value of X. Thus,

we must, ignore the write_item(X) operation of T because it is already outdated and

Mr.Lohit B and Mr.Santosh Dept of CSE ,CEC Page 34

obsolete. Notice that any conflict arising from this situation would be detected by case

(1).

3 If neither the condition in part (1) nor the condition in part (2) occurs, then

execute the write item (X) operation of T and set write TS (X) to TS (T) .

 Multiversion Concurrency Control Techniques

Other protocols for concurrency control keep the old values of a data item when the item is

updated. These are known as multiversion concurrency control, because several versions (values)

of an item are maintained. When a transaction requires access to an item, an appropriate version

is chosen to maintain

the serializability of the currently executing schedule, if possible. The idea is that some read

operations that would be rejected in other techniques can still be accepted by reading an older

version of the item to maintain serializability.When a transaction writes an item, it writes a new

version and the old version(s) of the item are retained. Some multiversion concurrency control

algorithms use the concept of view serializability rather than conflict serializability. An obvious

drawback of multiversion techniques is that more storage is needed to maintain multiple versions

of the database items.

Several multiversion concurrency control schemes have been proposed. We discuss two schemes

here,one based on timestamp ordering and the other based on 2PL.

Multiversion Technique Based on Timestamp Ordering

In this method, several versions X1, X2, ..., Xk of each data item X are maintained. For each

version, the value of version Xi and the following two timestamps are kept:

1. read_TS(Xi).Theread timestampof Xi is the largest of all the timestamps of transactions that

have successfully read version Xi.

2. write_TS(Xi). The write timestamp of Xi is the timestamp of the transaction that wrote the

value of version Xi.

Whenever a transaction Tis allowed to execute a write_item(X) operation,a new version Xk+1 of

item X is created, with both the write_TS(Xk+1) and the read_TS(Xk+1) set to TS(T).

Mr.Lohit B and Mr.Santosh Dept of CSE ,CEC Page 35

Correspondingly, when a transaction T is allowed to read the value of version Xi,the value of

read_TS(Xi) is set to the larger of the current read_TS(Xi) and TS(T).

To ensure serializability,the following rules are used:

1. If transaction T issues a write_item(X) operation, and version i of X has the highest

write_TS(Xi) of all versions of Xthat is also less than or equal toTS(T), and read_TS(Xi) >

TS(T), then abort and roll back transaction T; otherwise, create a new version Xj of X with

read_TS(Xj) = write_TS(Xj) = TS(T).

2. If transaction T issues a read_item(X) operation, find the version i of X that has the highest

write_TS(Xi) of all versions of X that is also less than or equal to TS(T); then return the value of

Xi to transaction T, and set the value of read_TS(Xi) to the larger of TS(T) and the current

read_TS(Xi).

Introduction to Database Recovery Protocols

In this chapter we discuss some of the techniques that can be used for database recovery

from failures. This chapter presents additional concepts that are relevant to recovery protocols,

and provides an overview of the various database recovery algorithms.

 5.13 Recovery Concepts

1. Recovery Outline and Categorization of Recovery Algorithms:

❖ Recovery from transaction failures usually means that the database is restored to the

most recent consistent state before the time of failure. To do this, the system must keep

information about the changes that were applied to data items by the various transactions.

This information is typically kept in the system log.

❖ A typical strategy for recovery may be summarized informally as follows:

1. If there is extensive damage to a wide portion of the database due to catastrophic

failure, such as a disk crash, the recovery method restores a past copy of the database that

Mr.Lohit B and Mr.Santosh Dept of CSE ,CEC Page 36

was backed up to archival storage (typically tape or other large capacity offline storage

media) and reconstructs a more current state by reapplying or redoing the operations of

committed transactions from the backed-up log, up to the time of failure.

2. When the database on disk is not physically damaged, and a non-catastrophic

failure has occurred, the recovery strategy is to identify any changes that may cause an

inconsistency in the database. For example, a transaction that has updated some database

items on disk but has not been committed needs to have its changes reversed by undoing

its write operations. It may also be necessary to redo some operations in order to restore a

consistent state of the database; for example, if a transaction has committed but some of

its write operations have not yet been written to disk. For non-catastrophic failure, the

recovery protocol does not need a complete archival copy of the database. Rather, the

entries kept in the online system log on disk are analyzed to determine the appropriate

actions for recovery.

❖ Two main policies for recovery from non-catastrophic transaction failures: deferred

update and immediate update.

❖ The deferred update techniques do not physically update the database on disk until after a

transaction commits; then the updates are recorded in the database. Before reaching

commit, all transaction updates are recorded in the local transaction workspace or in the main

memory buffers that the DBMS maintains. Before commit, the updates are recorded

persistently in the log file on disk, and then after commit, the updates are written to the

database from the main memory buffers. If a transaction fails before reaching its commit

point, it will not have changed the database on disk in any way, so UNDO is not needed. It

may be necessary to REDO the effect of the operations of a committed database on disk.

Hence, deferred update is also known as the NO-UNDO/REDO algorithm.

❖ In the immediate update techniques, the database may be updated by some operations of a

transaction before the transaction reaches its commit point. These operations must also be

recorded in the log on disk by force-writing before they are applied to the database on disk,

making recovery still possible. If a transaction fails after recording some changes in the

database on disk but before reaching its commit point, the effect of its operations on the

Mr.Lohit B and Mr.Santosh Dept of CSE ,CEC Page 37

database must be undone; that is, the transaction must be rolled back. In the general case

of immediate update, both undo and redo may be required during

2. Caching (Buffering) of Disk Blocks:

The recovery process is often closely intertwined with operating system functions— in

particular, the buffering of database disk pages in the DBMS main memory cache.

•:• Multiple disk pages that include the data items to be updated are cached into main memory

buffers and then updated in memory before being written back to disk. The caching of disk

pages is traditionally an operating system function, but because of its importance to the

efficiency of recovery procedures, it is handled by the DBMS by calling low-level operating

systems routines.

In general, it is convenient to consider recovery in terms of the database disk pages (blocks).

Typically a collection of in-memory buffers, called the DBMS cache, is kept under the

control of the DBMS for the purpose of holding these buffers. A directory for the cache is

used to keep track of which database items are in the buffers. This can be a table of

<Diskpageaddres s , Buf fe r_ loca t ion ,

> entries.

When the DBMS requests action on some item, first it checks the cache directory to

determine whether the disk page containing the item is in the DBMS cache. If it is not,

cache. It may be necessary to replace (or flush) some of the cache buffers to make space

available for the new item.

The entries in the DBMS cache directory hold additional information relevant to buffer

management. Associated with each buffer in the cache is a dirty bit, which can be included in

the directory entry to indicate whether or not the buffer has been modified. When a page is

first read from the database disk into a cache buffer, a new entry is inserted in the cache

directory with the new disk page address, and the dirty bit is set to 0 (zero). As soon as the

buffer is modified, the dirty bit for the corresponding directory entry is set to 1 (one).

Additional information, such as the transaction id(s) of the transaction(s) that modified

the buffer, are also kept in the directory. When the buffer contents are replaced (flushed)

from the cache, the contents must first be written back to the corresponding disk.

Mr.Lohit B and Mr.Santosh Dept of CSE ,CEC Page 38

❖ Two main strategies can be employed when flushing a modified buffer back to disk.

◼ in-place updating writes the buffer to the same original disk location, thus

overwriting the old value of any changed data items on disk. Hence, a single copy of

each database disk block is maintained.

◼ Shadowing strategy writes an updated buffer at a different disk location, so

multiple versions of data items can be maintained, but this approach is not typically

used in practice.

❖ In general, the old value of the data item before updating is called the before image

(BFIM), and the new value after updating is called the after image (AFIM). If shadowing is

used, both the BFIM and the AFIM can be kept on disk; hence, it is not strictly necessary

to maintain a log for recovering.

3. Write-Ahead Logging, Steal/No-Steal, and Force/No-Force:

When in-place updating is used, it is necessary to use a log for recovery. In this case, the

recovery mechanism must ensure that the BFIM of the data item is recorded in, the

appropriate log entry and that the log entry is flushed to disk before the BFIM is

overwritten with the AFIM in the database on disk. This process is generally known as

write-ahead logging and is necessary so we can UNDO the operation if this is required

during recovery.

Two types of log entry information included for a write command: the information needed

for UNDO and the information needed for REDO.

◼ A REDO-type log entry includes the new value (AFIM) of the item written by the

operation since this is needed to redo the effect of the operation from the log (by

setting the item value in the database on disk to its AFIM).

◼ The UNDO-type log entries include the old value (BFIM) of the item since this is

needed to undo the effect of the operation from the log (by setting the item value in

the database back to its BFIM). In an UNDO/REDO algorithm, both BFIM and

AFIM are recorded into a single log entry. Additionally, when cascading rollback is

possible, read_item entries in the log are considered to be UNDO-type entries.

Mr.Lohit B and Mr.Santosh Dept of CSE ,CEC Page 39

❖ The DBMS cache holds the cached database disk blocks in main memory buffers. The

DBMS cache includes not only data file blocks, but also index file blocks and log file

blocks from the disk.

❖ The deferred update (NO-UNDO) recovery scheme follows a no-steal approach.

However, typical database systems employ a steal/no-force (UNDO/REDO) strategy.

❖ Advantage of steal: It avoids the need for a very large buffer space to store all

updated pages in memory.

Advantage of no-force: An updated page of a committed transaction may still be in the

buffer when another transaction needs to update it, thus eliminating the I/O cost to write

that page multiple times to disk and possibly having to read it again from disk. This may

provide a substantial saving in the number of disk I/O operations when a specific page is

updated heavily by multiple transactions.

❖ To permit recovery when in-place updating is used, the appropriate entries

required for recovery must be permanently recorded in the log on disk before changes are

applied to the database. For example, consider the following write-ahead logging (WAL)

protocol for a recovery algorithm that requires both UNDO and REDO:

1. The before image of an item cannot be overwritten by its after image in the database on

disk until all UNDO-type log entries for the updating transaction up to this point have

been force-written to disk.

2. The commit operation of a transaction cannot be completed until all the REDO-type and

UNDO-type log records for that transaction have been force-written to disk.

❖ To facilitate the recovery process, the DBMS recovery subsystem may need to maintain a

number of lists related to the transactions being processed in the system. These include

a list for active transactions that have started but not committed as yet, and they may

also include lists of all committed and aborted transactions since the last checkpoint.

Maintaining these lists makes the recovery process more efficient.

Mr.Lohit B and Mr.Santosh Dept of CSE ,CEC Page 40

4. Checkpoints in the System Log and Fuzzy Checkpointing:

❖ A [c h e c k p o i n t , l i s t o f a c t i v e t r a n s a c t i o n s] r e co r d i s w r i t t en i n t o

t h e l o g periodically at that point when the system writes out to the database on disk all

DBMS buffers that have been modified. As a consequence of this, all transactions that

have their [commit, T] entries in the log before a [checkpoint] entry do not need to

have their WRITE operations redone in case of a system crash, since all their updates will

be recorded in the database on disk during checkpointing.

❖ As part of checkpointing, the list of transaction ids for active transactions at the time of the

checkpoint is included in the checkpoint record, so that these transactions can be easily

identified during recovery.

❖ The recovery manager of a DBMS must decide at what intervals to take a checkpoint. The

interval may be measured in time—say, every m minutes—or in the number t of committed

transactions since the last checkpoint, where the values of in or t are system parameters.

❖ Taking a checkpoint consists of the following actions:

1. Suspend execution of transactions temporarily.

2. Force-write all main memory buffers that have been modified to disk.

3. Write a [checkpoint] record to the log, and force-write the log to disk.

4. Resume executing transactions.

As a consequence of step 2, a checkpoint record in the log may also include additional

information, such as a list of active transaction ids, and the locations (addresses) of the first

and most recent (last) records in the log for each active transaction. This can facilitate

undoing transaction operations in the event that a transaction must be rolled back.

❖ The time needed to force-write all modified memory buffers may delay transaction

processing because of step 1, which is not acceptable in practice. To overcome this, it is

common to use a technique called

Mr.Lohit B and Mr.Santosh Dept of CSE ,CEC Page 41

5. Transaction Rollback and Cascading Rollback:

❖ If a transaction fails for whatever reason after updating the database, but before the

transaction commits, it may be necessary to roll back the transaction. If any data item

values have been changed by the transaction and written to the database on disk, they must

be restored to their previous values (BFIMs).

❖ The undo-type log entries are used to restore the old values of data items that must be rolled

back. If a transaction T is rolled back, any transaction S that has, in the interim, read the

value of some data item X written by T must also be rolled back. Similarly, once S is rolled

back, any transaction R that has read the value of some data item Y written by S must also

be rolled back; and so on This phenomenon is called cascading rollback, and it can occur

when the recovery protocol ensures recoverable schedules but does not ensure strict or

cascadeless schedules. All recovery mechanisms are designed so that cascading rollback is

never required.

❖ Figure 23 shows an example where cascading rollback is required. The read and

write operations of three individual transactions are shown'in Figure 23(a).

Mr.Lohit B and Mr.Santosh Dept of CSE ,CEC Page 42

 Transaction Actions That Do Not Affect the Database

In general, a transaction will have actions that do not affect the database, such as

generating and printing messages or reports from information retrieved from the database. If a

transaction fails before completion, we may not want the user to get these reports,since the

transaction has failed to complete.

5.14 NO-UNDO/REDO RECOVERY BASED ON DEFERRED UPDATE

+ The idea behind deferred update is to defer or postpone any actual updates to the database

on disk until the transaction completes its execution successfully and reaches its commit

point.

• During transaction execution, the updates are recorded only in the log and in the cache

buffers. After the transaction reaches its commit point and the log is force-written to disk,

the updates are recorded in the database. If a transaction fails before reaching its commit

point, there is no need to undo any operations because the transaction has not affected the

database on disk in any way. Therefore, only REDO type log entries are needed in the log,

which include the new value (AFIM) of the item written by a write operation. The UNDO-

type log entries are not needed since no undoing of operations will be required during

recovery.

❖ This may simplify the recovery process, but it cannot be used in practice unless

transactions are short and each transaction changes few items. For other types of

transactions, there is the potential for running out of buffer space because transaction

changes must be held in the cache buffers until the commit point, so many cache buffers

will be pinned and cannot be replaced.

❖ A typical deferred update protocol is stated as follows:

1. A transaction cannot change the database on disk until it reaches its commit point; hence

all buffers that have been changed by the transaction must be pinned until the transaction

commits (this corresponds to a no-steal policy).

2. A transaction does not reach its commit point until all its REDO-type log entries are

Mr.Lohit B and Mr.Santosh Dept of CSE ,CEC Page 43

recorded in the log and the log buffer is force-written to disk.

The step 2 of this protocol is a restatement of the write-ahead logging (WAL) protocol.

Because the • database is never updated on disk until after the transaction commits, there

is never a need to UNDO any operations. REDO is needed in case the system fails after a

transaction commits but before all its changes are recorded in the database on disk. In

this case, the transaction operations are redone from the log entries during recovery

Figure 23.2 illustrates a timeline for a possible schedule of executing transactions

When the checkpoint was taken at time t1, transaction T1 had committed, whereas transactions

T3 and T4 had not. Before the system crash at time t2, T3 and T2 were committed but not T4 and

T5.According to the RDU_M method,there is no need to redo the write_item operations of

transaction T1—or any transactions committed before the last checkpoint time t1. The

write_item operations of T2 and T3 must be redone, however, because both transactions reached

their commit points after the last checkpoint.Recall that the log is force-written before

committing a transaction. Transactions T4 and T5 are ignored: They are effectively canceled or

rolled back because none of their write_item operations were recorded in the database on disk

under the deferred update protocol.

Mr.Lohit B and Mr.Santosh Dept of CSE ,CEC Page 44

5.15 RECOVERY TECHNIQUES BASED ON IMMEDIATE UPDATE

❖ In these techniques, when a transaction issues an update command, the database on disk

can be updated immediately, without any need to wait for the transaction to reach its

commit point.

❖ It is not a requirement that every update be applied immediately to disk; it is just possible

that some updates are applied to disk before the transaction commits.

❖ Provisions must be made for undoing the effect of update operations that have been applied

to the database by a failed transaction. This is accomplished by rolling back the transaction

and undoing the effect of the transaction's write item operations. Therefore, the UNDO-

type log entries, which include the old value (BFIM) of the item, must be stored in the log.

Because UNDO can be needed during recovery, these methods follow a steal strategy for

deciding when updated main memory buffers can be written back to disk.

❖ Two main categories of immediate update algorithms.

1. If the recovery technique ensures that all updates of a transaction are recorded in the

database on disk before the transaction commits, there is never a need to REDO any

operations of committed transactions. This is called the UNDO/NO-REDO recovery

algorithm. In this method, all updates by a transaction must be recorded on disk before

the transaction commits, so that REDO is never needed. Hence, this method must utilize

the steal/force strategy for deciding when updated main memory buffers are written back

to disk.

2. If the transaction is allowed to commit before all its changes are written to the database,

we have the most general case, known as the UNDO/REDO recovery algorithm. In this

case, the steaUnoforce strategy is applied. This is also the most complex technique, but the

most commonly used in . practice.

❖ When concurrent execution is permitted, the recovery process again depends on the protocols

used for concurrency control. The procedure RIU m (Recovery using Immediate Updates for

a Multiuser environment) outlines a recovery algorithm for concurrent transactions with

immediate update (UNDO/REDO recovery). Assume that the log includes checkpoints and that

Mr.Lohit B and Mr.Santosh Dept of CSE ,CEC Page 45

the concurrency control protocol produces strict schedules. A strict schedule does not allow a

transaction to read or write an item unless the transaction that wrote the item has committed.

But deadlocks can occur in strict two-phase locking, thus requiring abort and UNDO of

transactions. For a strict schedule, UNDO of an operation requires changing the item back to

its old value (BFIM).

 Procedure RIU_M (UNDO/REDO with checkpoints):

1. Use two lists of transactions

maintained by the system: the

committed transactions since the last checkpoint and the active transactions.

2. Undo all the write_item operations of the active (uncommitted) transactions, using the

UNDO procedure. The operations should be undone in the reverse of the order in which

they were written into the log.

3. Redo all the write_item operations of the committed transactions from the log, in the

order in which they were written into the log, using the REDO procedure defined

earlier.

The UNDO procedure is defined as follows: Procedure UNDO (WRITE OP): Undoing a

write_item operation write op consists of examining i ts log ent ry [wri te i t em, T,

X, o ld value , new value] and se t t ing the value of item X in the database to old_value,

which is the before image (BFIM). Undoing a number of write_item operations from one or

more transactions from the log must proceed in the reverse order from the order in which the

operations were written in the log.

Step 3 is more efficiently done by starting from the end of the log and redoing only the last

update of each item X. Whenever an item is redone, it is added to a list of redone items and is

not redone again. A similar procedure can be devised to improve the efficiency of step 2 so

that an item can be undone at most once during recovery. In this case, the earliest UNDO is

applied first by scanning the log in the

Mr.Lohit B and Mr.Santosh Dept of CSE ,CEC Page 46

 Shadow Paging(VTU QP)

This recovery scheme does not require the use of a log in a single-user environment. In a

multiuser environment, a log may be needed for the concurrency control method. Shadow

paging considers the database to be made up of a number of fixedsize disk pages (or disk

blocks)—say, n—for recovery purposes.A directory with n entries5 is constructed, where the ith

entry points to the ith database page on disk. The directory is kept in main memory if it is not too

large,and all references— reads or writes—to database pages on disk go through it.vWhen a

transaction begins executing, the current directory—whose entries point to the most recent or

current database pages on disk—is copied into a shadow directory.The shadow directory is then

saved on disk while the current directory is used by the transaction.

During transaction execution, the shadow directory is never modified. When a write_item

operation is performed, a new copy of the modified database page is created, but the old copy of

that page is not overwritten. Instead, the new page is written elsewhere—on some previously

unused disk block. The current directory entry is modified to point to the new disk block,

whereas the shadow directory is not modified and continues to point to the old unmodified disk

block.Figure 23.4 illustrates the concepts of shadow and current directories. For pages updated

by the transaction, two versions are kept. The old version is referenced by the shadow directory

and the new version by the current directory.

Mr.Lohit B and Mr.Santosh Dept of CSE ,CEC Page 47

5.15 Database Backup and Recovery from Catastrophic Failures

So far,all the techniques we have discussed apply to noncatastrophic failures.A key

assumption has been that the system log is maintained on the disk and is not lost as a result of the

failure. Similarly, the shadow directory must be stored on disk to allow recovery when shadow

paging is used. The recovery techniques we have discussed use the entries in the system log or

the shadow directory to recover from failure by bringing the database back to a consistent state.

The recovery manager of a DBMS must also be equipped to handle more catastrophic

failures such as disk crashes. The main technique used to handle such crashes is a database

backup, in which the whole database and the log are periodically copied onto a cheap storage

medium such as magnetic tapes or other large capacity offline storage devices. In case of a

catastrophic system failure, the latest backup copy can be reloaded from the tape to the disk, and

the system can be restarted.

Data from critical applications such as banking, insurance, stock market, and other

databases is periodically backed up in its entirety and moved to physically separate safe

locations.Subterranean storage vaults have been used to protect such data from

flood,storm,earthquake,or fire damage.Events like the 9/11 terrorist attack in New York (in

2001) and the Katrina hurricane disaster in New Orleans (in 2005) have created a greater

awareness of disaster recovery of business-critical databases.

To avoid losing all the effects of transactions that have been executed since the last

backup, it is customary to back up the system log at more frequent intervals than full database

backup by periodically copying it to magnetic tape. The system log is usually substantially

smaller than the database itself and hence can be backed up more frequently. Therefore, users do

not lose all transactions they have performed since the last database backup. All committed

transactions recorded in the portion of the system log that has been backed up to tape can have

their effect on the database redone. A new log is started after each database backup. Hence, to

recover from disk failure, the database is first recreated on disk from its latest backup copy on

tape. Following that, the effects of all the committed transactions whose operations have been

recorded in the backed-up copies of the system log are reconstructed.

