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MODULE - 4 

 

Basics of Functional Dependencies and Normalization for 

Relational Databases. 
 

1.  Informal Design Guidelines for Relation Schemas. 

 

Four informal guidelines that may be used as measures to determine the quality of relation 

schema design: 

•  Making sure that the semantics of the attributes is clear in the schema 

•  Reducing the redundant information in tuples 

•  Reducing the NULL values in tuples 

•  Disallowing the possibility of generating spurious tuples 

 

1.1 Imparting Clear Semantics to Attributes in Relations. 

 

• The group of  attributes belonging to one relation have certain real-world meaning and a 

proper interpretation associated with them. 

• The semantics of a relation refers to its meaning resulting from the interpretation of 

attribute values in a tuple. 

• If the conceptual design done carefully and the mapping procedure is followed 

systematically, the relational schema design should have a clear meaning. 

• The meaning of the EMPLOYEE relation schema is quite simple: Each tuple represents an 

employee, with values for the employee’s name (Ename), Social Security number (Ssn), 

birth date (Bdate), and address (Address), and the number of the department that the 

employee works for (Dnumber).  

 

 

Guideline 1 

• Design a relation schema so that it is easy to explain its meaning.  

• Do not combine attributes from multiple entity types and relationship types into a single 

relation. 

• If a relation schema corresponds to one entity type or one relationship type, it is 

straightforward to interpret and to explain its meaning. Otherwise, if the relation 
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corresponds to a mixture of multiple entities and relationships, semantic ambiguities will 

result and the relation cannot be easily explained. 

 

 

Examples of Violating Guideline 1. 

 

• The following relation schema EMP_DEPT and EMP_PROJ  have clear semantics but 

they violate Guideline 1 by mixing attributes from distinct real-world entities: 

EMP_DEPT mixes attributes of employees and departments, and EMP_PROJ mixes 

attributes of employees and projects and the WORKS_ON relationship. Hence, they fare 

poorly against the above measure of design quality.  

 

 

 

1.2 Redundant Information in Tuples and Update Anomalies. 

 

• One goal of schema design is to minimize the storage space used by the base relations. 

Grouping attributes into relation schemas has a significant effect on storage space.  

• For example, The space used by the two base relations EMPLOYEE and 

DEPARTMENT is less compared to EMP_DEPT . 
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1. In EMP_DEPT, the attribute values pertaining to a particular department (Dnumber, 

Dname, Dmgr_ssn) are repeated for every employee who works for that department. In 

contrast, each department’s information appears only once in the DEPARTMENT 

relation. 

 
 

2. EMP_DEPT base relation is the result of applying the NATURAL JOIN operation to 

EMPLOYEE and DEPARTMENT. Storing natural joins of base relations leads to an 

additional problem referred to as update anomalies.  

 

Update anomalies  can be classified into insertion anomalies, deletion anomalies, 

and modification anomalies. 

 

Insertion Anomalies. 

Insertion anomalies can be differentiated into two types, based on the EMP_DEPT relation: 

1. To insert a new employee tuple into EMP_DEPT, we must include either the attribute 

values for the department that the employee works for, or NULLs (if the employee does 

not work for a department as yet). 

2. It is difficult to insert a new department that has no employees as yet in the EMP_DEPT 

relation. The only way to do this is to place NULL values in the attributes for employee. 

This violates the entity integrity for EMP_DEPT because Ssn is its primary key. 

 

Deletion Anomalies.  

The problem of deletion anomalies is related to the second insertion anomaly situation. 

1. If we delete from EMP_DEPT an employee tuple that happens to represent the last 

employee working for a particular department, the information concerning that department 

is lost from the database.  

2. This problem does not occur in  DEPARTMENT  relation since tuples are stored 

separately. 
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Modification Anomalies.  

 

1. In EMP_DEPT, if we change the value of one of the attributes of a particular department 

say, the manager of department 5 we must update the tuples of all employees who work in 

that department; otherwise, the database will become inconsistent.  

2. If we fail to update some tuples, the same department will be shown to have two different 

values for manager in different employee tuples, which would be wrong. 

Guideline 2 

• Design the base relation schemas so that no insertion, deletion, or modification anomalies 

are present in the relations.  

• If any anomalies are present, note them clearly and make sure that the programs that 

update the database will operate correctly. 

 

1.3 NULL Values in Tuples 

 

• If many of the attributes do not apply to all tuples in the relation, we end up with many 

NULLs in those tuples. This can waste space at the storage level and may also lead to 

problems with understanding the meaning of the attributes. 

• SELECT and JOIN operations involve comparisons; if NULL values are present, the 

results may become unpredictable. 

• NULLs can have multiple interpretations, such as the following: 

1. The attribute does not apply to this tuple. For example, Visa_status may not apply to 

U.S. students. 

2. The attribute value for this tuple is unknown. For example, the Date_of_birth may be 

unknown for an employee. 

3. The value is known but absent;  For example, the Home_Phone_Number for an 

employee may exist, but may not be available and recorded yet. 

 

Guideline 3 

• Avoid placing attributes in a base relation whose values may frequently be NULL. If 

NULLs are unavoidable, make sure that they apply in exceptional cases only and do not 

apply to a majority of tuples in the relation. 

 

1.4 Generation of Spurious Tuples 

 

• Consider the two relation schemas EMP_LOCS and EMP_PROJ1. Suppose  if we perform  

NATURAL JOIN operation on EMP_PROJ1 and EMP_LOCS, the result produces many 

more tuples than the original set of tuples .  

• These additional tuples are called spurious tuples because they represent spurious 

information that is not valid. The spurious tuples are marked by asterisks (*) in Figure 

15.6. 
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•  Decomposing EMP_PROJ into EMP_LOCS and EMP_PROJ1 is undesirable because 

when we JOIN them back using NATURAL JOIN, we do not get the correct original 

information. This is because in this case Plocation is the attribute that relates EMP_LOCS 

and EMP_PROJ1, and Plocation is neither a primary key nor a foreign key in either 

EMP_LOCS or EMP_PROJ1.  

 

 
 

 

Guideline 4 

• Design relation schemas so that they can be joined with equality conditions on attributes 

that are appropriately related (primary key, foreign key) pairs in a way that guarantees that 

no spurious tuples are generated.  

• Avoid relations that contain matching attributes that are not (foreign key, primary key) 

combinations because joining on such attributes may produce spurious tuples.  

 

2 Functional Dependencies 

 

• Definition :A functional dependency, denoted by X → Y, between two sets of attributes 

X and Y that are subsets of R specifies a constraint on the  tuples in a  relation state r of R. 

The constraint is that, for any two tuples t1 and t2 in r that have t1[X] = t2[X], they must 

also have t1[Y] = t2[Y]. 

• A functional dependency, denoted by X → Y means that the values of the Y  are 

determined by the values of  X .  

• A functional dependency is a property of the semantics or meaning of the attributes. The 

database designers will use their understanding of the semantics of the attributes of R to 

specify the functional dependencies in a relation.  

• Consider the relation schema EMP_PROJ  from the semantics of the attributes and the 

relation, the following functional dependencies should hold: 
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a. Ssn→Ename 

b. Pnumber →{Pname, Plocation} 

c. {Ssn, Pnumber}→Hours 

• These functional dependencies specifies that  

(a) the value of an employee’s Social Security number (Ssn) uniquely determines the 

employee name (Ename),  

(b) the value of a project’s number (Pnumber) uniquely determines the project name 

(Pname) and location (Plocation), and  

(c) Combination of Ssn and Pnumber values uniquely determines the number of hours the 

employee currently works on the project per week (Hours). 

• Types of functional dependency : 

1. A functional dependency X → Y is a full functional dependency if removal of any 

attribute A from X means that the dependency does not hold any more; 

     Ex:  {Ssn, Pnumber} → Hours is a full dependency (neither Ssn → Hours nor 

Pnumber→Hours holds). 

2. A functional dependency X → Y is a partial functional dependency if removal of any 

attribute A from X and  the dependency still holds; 

      Ex:   {Ssn, Pnumber}→Ename is partial because Ssn→Ename holds. 

3. A functional dependency X→Y in a relation schema R is a transitive dependency if 

there exists a set of attributes Z in R such that  X→Z and Z→Y hold. 

     Ex: The dependency Ssn→Dmgr_ssn is transitive in EMP_DEPT,  because of the 

dependencies Ssn → Dnumber and Dnumber → Dmgr_ssn. 

4. Trivial Functional Dependency. If a functional dependency (FD)  X → Y holds, 

where Y is a subset of X, then it is called a trivial FD.  

     Non-trivial − If an FD X → Y holds, where Y is not a subset of X, then it is called a 

non-trivial FD. 

 

3 Normal Forms Based on Primary Keys 
 

3.1 Normalization of Relations 

• The normalization process, as first proposed by Codd (1972).  Codd proposed three 

normal forms, which he called first, second,  third normal form and Boyce-Codd normal 

form (BCNF). All these normal forms are based on functional dependencies among the 

attributes of a relation. Later, a fourth normal form (4NF) and a fifth normal form (5NF) 

were proposed, based on the concepts of multivalued dependencies and join dependencies, 

respectively;  

• Normalization of data can be considered a process of analyzing the given relation 

schemas based on their FDs and primary keys to achieve the desirable properties of (1) 

minimizing redundancy and (2) minimizing the insertion, deletion, and update anomalies. 

• It can be considered as a “filtering” or “purification” process to make the design have 

successively better quality. 

• Definition. The normal form of a relation refers to the highest normal form condition that 

it meets, and hence indicates the degree to which it has been normalized. 
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3.2  Definitions of Keys and Attributes Participating in Keys. 

 

• Definition. A superkey of a relation schema R is a set of attributes S ⊆ R with the 

property that no two tuples t1 and t2 in any legal relation state r of R will have t1[S] = 

t2[S].  

• A key K is a superkey with the additional property that removal of any attribute from K 

will cause K not to be a superkey any more. 

• The difference between a key and a superkey is that a key has to be minimal; that is, if we 

have a key K = {A1, A2, ..., Ak} of R, then K – {Ai} is not a key of R. 

Ex:  {Ssn} is a key for EMPLOYEE, whereas {Ssn}, {Ssn, Ename}, {Ssn, Ename, 

Bdate}, and any set of attributes that includes Ssn are all superkeys. 

• If a relation schema has more than one key, each is called a candidate key. One of the 

candidate keys is arbitrarily designated to be the primary key, and the others are called 

secondary keys. {Ssn} is the only candidate key for EMPLOYEE, so it is also the primary 

key. 

• Definition. An attribute of relation schema R is called a prime attribute of R if it is a 

member of some candidate key of R. An attribute is called nonprime if it is not a prime 

attribute—that is, if it is not a member of any candidate key.  

Ex:   Ssn and Pnumber are prime attributes of WORKS_ON, whereas other attributes of 

WORKS_ON are nonprime. 

 

3.3 First Normal Form 

 

• First normal form (1NF) states that the domain of an attribute must include only atomic 

(simple, indivisible) values and that the value of any attribute in a tuple must be a single 

value from the domain of that attribute. 

• Consider the following DEPARTMENT relation, It is not in 1NF. Because the domain of 

Dlocations contains sets of values and hence is nonatomic. 

 

 
 

• There are three main techniques to achieve first normal form for such a relation: 

 

1. Remove the attribute Dlocations that violates 1NF and place it in a separate relation 

DEPT_LOCATIONS along with the primary key Dnumber of DEPARTMENT. The 

primary key of this relation is the combination {Dnumber, Dlocation}.  
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2. Expand the key so that there will be a separate tuple in the original DEPARTMENT 

relation for each location of a DEPARTMENT. In this case, the primary key becomes 

the combination {Dnumber, Dlocation}. This solution has the disadvantage of 

introducing redundancy in the relation. 

 

 
 

3. If a maximum number of values is known for the attribute for example, if it is known 

that at most three locations can exist for a department—replace the Dlocations attribute 

by three atomic attributes: Dlocation1, Dlocation2, and Dlocation3. This solution has 

the disadvantage of introducing NULL values if most departments have fewer than 

three locations.  

 

• First normal form also disallows multivalued attributes that are themselves composite. 

These are called nested relations because each tuple can have a relation within it.  

• Figure 15.10 the EMP_PROJ relation represents an employee entity, and a relation 

PROJS(Pnumber, Hours) within each tuple. 

• The schema of this EMP_PROJ relation can be represented as follows: EMP_PROJ(Ssn, 

Ename, {PROJS(Pnumber, Hours)}). The set braces { } identify the attribute PROJS as 

multivalued, and we list the component attributes that form PROJS between parentheses    

( ). 

• To normalize this into 1NF, we remove the nested relation attributes into a new relation 

and propagate the primary key into it; Decomposition and primary key propagation yield 

the schemas EMP_PROJ1 and EMP_PROJ2, as shown in Figure 15.10(c). 
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Figure 15.10 Normalizing nested relations into 1NF. 

(a)  Schema of the EMP_PROJ relation with a nested relation attribute PROJS. 

(b)  Sample extension of the EMP_PROJ relation showing nested relations within each tuple. 

c)  Decomposing  EMP_PROJ into  EMP_PROJ1 and EMP_PROJ2 by propagating the   primary key. 

 

3.4 Second normal form (2NF) 

 

• Definition. A relation schema R is in 2NF if every nonprime attribute A in R is fully 

functionally dependent on the primary key of R. 

 

• Second normal form (2NF)  is based on the concept of full functional dependency. A 

functional dependency X → Y is a full functional dependency if removal of any attribute 

A from X means that the dependency does not hold any more. 

     Example1: {Ssn, Pnumber} → Hours is a full dependency (neither Ssn → Hours nor               

Pnumber→Hours holds). 

• A functional dependency X → Y is a partial functional dependency if removal of any 

attribute A from X and  the dependency still holds; 

     Example2:  The dependency {Ssn, Pnumber}→Ename is partial because Ssn→Ename 

holds. 

• The EMP_PROJ relation is in 1NF but is not in 2NF. The nonprime attribute Ename 

violates 2NF because of FD2 ,  Pname and Plocation violates 2NF  because of FD3. 

• The functional dependencies FD2 and FD3 make Ename, Pname, and Plocation partially 

dependent on the primary key {Ssn, Pnumber} of EMP_PROJ, thus violating the 2NF test. 
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• If a relation schema is not in 2NF, it can be second normalized by decomposing  

EMP_PROJ into the three relation schemas EP1, EP2, and EP3 shown in Figure 15.11(a), 

each of which is in 2NF. 

 

 
 

Figure 15.11-    Normalizing into 2NF and 3NF. 

 (a) Normalizing EMP_PROJ into 2NF relations. 

 

Example 2: 

 

• Consider the relation schema LOTS shown in Figure 15.12(a). There are two candidate 

keys: Property_id# and {County_name, Lot#};  lot numbers are unique only within each 

county, but Property_id# numbers are unique across counties for the entire state.  

 

• There are two candidate keys Property_id# and {County_name, Lot#}. We choose 

Property_id# as the primary key, so it is underlined in Figure 15.12(a). 

 

• The LOTS relation schema violates the general definition of 2NF because Tax_rate is 

partially dependent on the candidate key {County_name, Lot#}, due to FD3.  

 

• To normalize LOTS into 2NF, we decompose it into the two relations LOTS1 and LOTS2, 

shown in Figure 15.12(b). We construct LOTS1 by removing the attribute Tax_rate that 

violates 2NF from LOTS and placing it with County_name  into another relation LOTS2. 

Both LOTS1 and LOTS2 are in 2NF. 
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Figure 15.12 

(a) The LOTS relation with its functional dependencies FD1 through FD4. 

(b) Decomposing into the 2NF relations LOTS1 and LOTS2. 

 

3.5  Third Normal Form (3NF) 

 

• Definition: A relation schema R is in 3NF if it satisfies 2NF and no nonprime 

attribute of R is transitively dependent on the primary key. 

• Third normal form (3NF) is based on the concept of transitive dependency. A functional 

dependency X→Y in a relation schema R is a transitive dependency if there exists a set of 

attributes Z in R such that  X→Z and Z→Y hold. 

     Ex: The dependency Ssn→Dmgr_ssn is transitive in EMP_DEPT,  because of the 

dependencies Ssn → Dnumber and Dnumber → Dmgr_ssn. 

 

 
Normalizing EMP_DEPT into 3NF relations. 

 

• The relation schema EMP_DEPT is not in 3NF because of the transitive dependency of 

Dmgr_ssn and Dname on Ssn via Dnumber. We can normalize EMP_DEPT by 

decomposing it into the two 3NF relation schemas ED1 and ED2 shown in the above 

figure.  
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Example 2: 

• FD4 in  LOTS1 violates 3NF because Area is not a superkey and Price is not a prime attribute in 

LOTS1. 

• To normalize LOTS1 into 3NF, we decompose it into the relation schemas LOTS1A and LOTS1B 

shown in Figure 15.12(c).We construct LOTS1A by removing the attribute Price that violates 3NF 

from LOTS1 and placing it with Area (the lefthand side of FD4 that causes the transitive 

dependency) into another relation LOTS1B. Both LOTS1A and LOTS1B are in 3NF. 

 
 

 
Figure 15.12(c). Decomposing LOTS1 into the 3NF relations LOTS1A and LOTS1B. 

 

4.  Boyce-Codd Normal Form. 

 

• Definition. A relation schema R is in BCNF if whenever a nontrivial functional 

dependency X→A holds in R, then X is a superkey of R. 

• The BCNF is based on the concept non trivial dependency. If an FD X → Y holds, where 

Y is not a subset of X, then it is called a non-trivial FD. 

• FD5 violates BCNF in LOTS1A because AREA is not a superkey of LOTS1A. 

decompose LOTS1A into two BCNF relations LOTS1AX and LOTS1AY, shown in 

Figure 15.13(a). 

 
 

Figure 15.13 

Boyce-Codd normal form. (a) BCNF normalization of LOTS1A with the functional 

dependency FD2 being lost in the decomposition. 
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• Consider Figure 15.14, which shows a relation TEACH with the following dependencies: 

 FD1: {Student, Course} → Instructor  

FD2:  Instructor → Course 

 
Figure 15.14 A relation TEACH that is in 3NF but not BCNF. 

• {Student, Course} is a candidate key for this relation and that the dependencies shown 

follow the pattern in Figure 15.13(b), with Student as A, Course as B, and Instructor as C. 

Hence this relation is in 3NF but not BCNF.  

 

• The relation can be  decomposed into one of the three following possible pairs: 

1. {Student, Instructor} and {Student, Course}. 

2. {Course, Instructor} and {Course, Student}. 

3. {Instructor, Course} and {Instructor, Student}. 

• All three decompositions lose the functional dependency FD1. The desirable 

decomposition  is  (Instructor, Course) and (Instructor, Student), because it is nonadditive 

join decomposition 

•  The relation schemas R1 and R2 form a nonadditive join decomposition of R with respect 

to a set F of functional dependencies if and only if (R1 ∩ R2) → (R1 – R2) or,  (R1 ∩ R2) 

→ (R2 – R1). 

 

5 . Multivalued Dependency and Fourth Normal Form 

 
• Definition:  A multivalued dependency X→→Y specified on relation schema R, where 

X and Y are both subsets of R, specifies the following constraint on any relation state 

r of R: If two tuples t1 and t2 exist in r such that t1[X] = t2[X]. Then two tuples t3 and 

t4 should also exist in r with the following properties, where we use Z to denote (R – 

(X ∪ Y)) 

t3[X] = t4[X] = t1[X] = t2[X]. 

t3[Y] = t1[Y] and t4[Y] = t2[Y]. 

t3[Z] = t2[Z] and t4[Z] = t1[Z]. 
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• An MVD X →→ Y in R is called a trivial MVD if (a) Y is a subset of X, or (b) X ∪ Y = 

R.  An MVD that satisfies neither (a) nor (b) is called a nontrivial MVD. For example, the 

relation EMP_PROJECTS in Figure 15.15(b) has the trivial MVD Ename →→ Pname. 

 

 
15.15(b) 

 

• Definition. A relation schema R is in 4NF with respect to a set of dependencies F (that 

includes functional dependencies and multivalued dependencies) if, for every 

nontrivial multivalued dependency X →→ Y in F,  X is a superkey for R. 

 

• An all-key relation is always in BCNF since it has no FDs.  An all-key relation such as the 

EMP relation in Figure 15.15(a), which has no FDs but has the MVD Ename→→ Pname | 

Dname, is not in 4NF. 

 

•  A relation that is not in 4NF due to a nontrivial MVD must be decomposed To convert it 

into a set of relations in 4NF. The decomposition removes the redundancy caused by the 

MVD. 

• Consider the EMP relation in Figure 15.15(a). EMP is not in 4NF because of the nontrivial 

MVDs Ename→→ Pname and Ename →→ Dname, and Ename is not a superkey of 

EMP. We decompose EMP into EMP_PROJECTS and EMP_DEPENDENTS, shown in 

Figure 15.15(b). Both EMP_PROJECTS and EMP_DEPENDENTS are in 4NF, because 

the MVDs Ename →→ Pname in EMP_PROJECTS and Ename →→ Dname in 

EMP_DEPENDENTS are trivial MVDs. 

 
Figure 15.15 

 (a) The EMP relation with two MVDs: Ename →→ Pname and Ename →→ Dname. 

(b) Decomposing the EMP relation into two 4NF relations EMP_PROJECTS and 

EMP_DEPENDENTS. 
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• Whenever we decompose a relation schema R into R1 = (X ∪ Y) and R2 = (R – Y) based on 

an MVD X →→ Y that holds in R, the decomposition has the nonadditive join property. 

• The following algorithm shows Relational Decomposition into 4NF Relations with 

Nonadditive Join Property. 

Input: A universal relation R and a set of functional and multivalued dependencies 

F. 

1. Set D:= { R }; 

2. While there is a relation schema Q in D that is not in 4NF, do 

     {    choose a relation schema Q in D that is not in 4NF; 

           find a nontrivial MVD X→→Y in Q that violates 4NF; 

           replace Q in D by two relation schemas (Q – Y) and (X U Y); 

      }; 

 

6.  Join Dependencies and Fifth Normal Form 
 

• A relation schema R when divided in to R1  and R2   has the lossless property and if the 

natural join is applied    (R1 * R2) we will get the original relation R. 

• In some cases there may be no lossless join decomposition of R if the number of 

decomposition is equal to two. But if the same relation is decomposed in to more than two 

relations we have a lossless decomposition. This dependency depends on the number of 

decomposition and hence referred as join dependency  

• Definition. A join dependency (JD), denoted by JD(R1, R2, ..., Rn), specified on relation 

schema R, specifies a constraint on the states r of R. The constraint states that every legal 

state r of R should have a nonadditive join decomposition into R1, R2, ..., Rn. Hence, for 

every such r we have  ∗(πR1 (r), πR2 (r), ..., πRn (r)) = r. 

• A join dependency JD(R1, R2, ..., Rn), specified on relation schema R, is a trivial JD if 

one of the relation schemas Ri in JD(R1, R2, ..., Rn) is equal to R. Such a dependency is 

called trivial because it has the nonadditive join property for any relation state r of R and 

thus does not specify any constraint on R.  

• Definition. A relation schema R is in fifth normal form (5NF) (or project-join normal 

form (PJNF)) with respect to a set F of functional, multivalued, and join dependencies if, 

for every nontrivial join dependency JD(R1, R2, ..., Rn) in F+,  every Ri is a superkey of R. 

 
Figure 15.15  (c)The relation SUPPLY with no MVDs is in 4NF but not in 5NF if it has 

the JD(R1, R2, R3). 
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Figure 15.15  (d) Decomposing the relation SUPPLY into the 5NF relations R1, R2, R3. 

 

• For  example of a JD, consider once again the SUPPLY all-key relation in Figure 15.15(c). 

Suppose that the following additional constraint always holds: Whenever a supplier s 

supplies part p, and a project j uses part p, and the supplier s supplies at least one part to 

project j, then supplier s will also be supplying part p to project j. This constraint can be 

restated in other ways and specifies a join dependency JD(R1, R2, R3) among the three 

projections R1(Sname, Part_name), R2(Sname, Proj_name), and R3(Part_name, 

Proj_name) of SUPPLY.  

• Figure 15.15(d) shows how the SUPPLY relation with the join dependency is decomposed 

into three relations R1, R2, and R3 that are each in 5NF. Notice that applying a natural 

join to any two of these relations produces spurious tuples, but applying a natural join to 

all three together does not. 
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16. Relational Database Design Algorithms and Dependencies 

 

1 Inference Rules for Functional Dependencies 
 

• The set of functional dependencies are specified by F on relation schema R, other 

functional dependencies can be inferred or deduced from the FDs in F. 

• For example, Department has one manager, the Dept_no uniquely determines Mgr_ssn,  

and manager uniquely determines phone number called Mgr_phone then these two 

dependencies together imply that Dept_no → Mgr_phone. 

     (Dept_no → Mgr_ssn), 

(Mgr_ssn→Mgr_phone), 

Dept_no → Mgr_phone 

• This is an inferred FD and need not be explicitly stated in addition to the two given FDs. 

Therefore, it is useful to define a concept called closure formally that includes all possible 

dependencies that can be inferred from the given set F. 

• Definition- The set of all dependencies that include F as well as all dependencies that can 

be inferred from F is called the closure of F; it is denoted by F+. 

• For example, suppose that we specify the following set F of obvious functional 

dependencies on the relation schema in Figure 15.3(a): 

     F = {Ssn → {Ename, Bdate, Address, Dnumber}, 

     Dnumber → {Dname, Dmgr_ssn} } 

     Some of the additional functional dependencies that we can infer from F are the    

following: 

     Ssn → {Dname, Dmgr_ssn} 

     Dnumber → Dname 

• The closure F+ of F is the set of all functional dependencies that can be inferred from F. 

To determine a systematic way to infer dependencies, The set of inference rules are  used 

to infer new dependencies from a given set of dependencies.  

• The notation F |=X → Y to denote that the functional dependency X→Y is inferred from 

the set of functional dependencies F. The FD {X,Y}→Z is abbreviated to XY→Z, and the 

FD {X, Y, Z} → {U, V} is abbreviated to XYZ → UV.  

 

The six inference rules IR1 through IR6 for functional dependencies: 

    

1. IR1 (reflexive rule): If X ⊇ Y, then X→Y.  The reflexive rule states that a set of 

attributes always determines itself or any of its subsets. 

        Ex: {fname, lname} → {fname} 

 

2. IR2 (augmentation rule): {X→Y} |=XZ→YZ.  The augmentation rule (IR2) says 

that adding the same set of attributes to both the left- and right-hand sides of a 

dependency results in another valid dependency.  

       Ex: If {SSN} → {fname}   then:  {SSN, DName} → {fname, DName} 
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3. IR3 (transitive rule): {X→Y, Y→Z} |= X→Z.  This Functional dependencies are 

transitive.  

       Ex: If:   {SSN} → {DNO}   {DNO} → {DName}                       

               Then: 

               {SSN} → {DName} 

 

4. IR4 (decomposition, or projective, rule): {X→YZ} |=X→Y.  The decomposition 

rule (IR4) says that we can remove attributes from the right-hand side of a 

dependency; applying this rule repeatedly can decompose the FD 

X → YZ  to    X → Y   and   X → Z. 

Ex:  If   {SSN} → {fname, DNO}    Then 

             {SSN} → {fname}    

             {SSN} → { DNO}     

.  

5. IR5 (union, or additive, rule): {X→Y, X→Z} |=X→YZ.  allows to  combine a set 

of dependencies {X→A1, X→A2, ..., X→An} into the single FD X→{A1, A2, ..., 

An}. 

 

6.   IR6 (pseudotransitive rule): {X→Y,WY→Z} |=WX→Z.  , Allows us to replace a 

set of attributes Y on the left hand side of a dependency with another set X that 

functionally determines Y, and can be derived from IR2 and IR3 if we augment the 

first functional dependency X→Y with W (the augmentation rule) and then apply the 

transitive rule. 

 

The inference rules can be proved based on contradiction. 

 

Proof of IR1. 

Suppose that X ⊇ Y and that two tuples t1 and t2 exist in some relation instance r of R such 

that t1 [X] = t2 [X]. Then t1[Y] = t2[Y] because X ⊇ Y; hence, X→Y must hold in r. 

 

 

Proof of IR2 (by contradiction).  

Assume that X→Y holds in a relation instance r of R but that XZ→YZ does not hold. Then 

there must exist two tuples t1 and t2 in r such that (1) t1[X] = t2[X], (2) t1[Y] = t2[Y],        

(3) t1 [XZ] = t2 [XZ], and (4) t1 [YZ] ≠ t2 [YZ]. This is not possible because from (1) and 

(3) we deduce (5) t1 [Z] = t2 [Z], and from (2) and (5) we deduce (6) t1 [YZ] = t2 [YZ], 

contradicting (4). 

 

Proof of IR3.  

Assume that (1) X → Y and (2) Y → Z both hold in a relation r. Then for any two tuples t1 

and t2 in r such that t1 [X] = t2 [X], we must have (3) t1 [Y] = t2 [Y], from assumption (1); 

hence we must also have (4) t1 [Z] = t2 [Z] from (3) and assumption (2); thus X→Z must 

hold in r. 
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Proof of IR4 (Using IR1 through IR3). 

1. X→YZ (given). 

2. YZ→Y (using IR1 and knowing that YZ ⊇ Y). 

3. X→Y (using IR3 on 1 and 2). 

 

Proof of IR5 (using IR1 through IR3). 

1. X→Y (given). 

2. X→Z (given). 

3. X→XY (using IR2 on 1 by augmenting with X; notice that XX = X). 

4. XY→YZ (using IR2 on 2 by augmenting with Y). 

5. X→YZ (using IR3 on 3 and 4). 

 

Proof of IR6 (using IR1 through IR3). 

1. X→Y (given). 

2. WY→Z (given). 

3. WX→WY (using IR2 on 1 by augmenting with W). 

4. WX→Z (using IR3 on 3 and 2). 

 

A systematic way to determine these additional functional dependencies is first to determine 

each set of attributes X that appears as a left-hand side of some functional dependency in F 

and then to determine the set of all attributes that are dependent on X. 

Definition. For each such set of attributes X, we determine the set X+ of attributes that are 

functionally determined by X based on F; X+ is called the closure of X under F. 

 

 

Algorithm 16.1. Determining X+, the Closure of X under F 

Input: A set F of FDs on a relation schema R, and a set of attributes X, which is a subset of 

R. 

  X+:= X; 

  repeat 

              old X+  := X+; 

              for each functional dependency Y→Z in F do 

                    if X+  ⊇ Y then X+:= X+ ∪ Z; 

  until (X+  = old X+); 

 

Algorithm starts by setting X+ to all the attributes in X. By IR1, we know that all these 

attributes are functionally dependent on X. we add attributes to X+ , using each functional 

dependency in F. We keep going through all the dependencies in F (the repeat loop) until no 

more attributes are added to X+ during a complete cycle (of the for loop) through the 

dependencies in F. 

 

Example 1, consider the relation schema EMP_PROJ  from the semantics of the attributes, 

the following set F of functional dependencies are identified. 

F = {Ssn → Ename, 
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Pnumber → {Pname, Plocation}, 

{Ssn, Pnumber} → Hours} 

 

Using Algorithm 16.1, we calculate the following closure sets with respect to F: 

{Ssn} + = {Ssn, Ename} 

{Pnumber}+ = {Pnumber, Pname, Plocation} 

{Ssn, Pnumber}+ = {Ssn, Pnumber, Ename, Pname, Plocation, Hours} 

 

Example 2.  Consider the following relation schema. 

CLASS(Classid,Course#,Instr_name,Credit_hrs,Text,Publisher,Classroom , Capacity).  

Let F, the set of functional dependencies for the above relation  

FD1: Classid → Course#, Instr_name, Credit_hrs, Text, Publisher, Classroom, Capacity; 

FD2:  Course# → Credit_hrs;  

FD3:  {Course#, Instr_name} → Text, Classroom;  

FD4:  Text → Publisher  

FD5:  Classroom → Capacity 

 

Using the inference rules about the FDs and applying the definition of closure, we can define 

the following closures: 

{Classid}+  ={Classid,Course#,Instr_name, Credit_hrs, Text, Publisher,Classroom,  Capacity}   

{Course#}+ = {Course#, Credit_hrs}  

{Course#, Instr_name}+ = {Course#, Credit_hrs, Text, Publisher, Classroom, Capacity} 

 

 

 

2. Equivalence of Sets of Functional Dependencies:  

 

• A set of functional dependencies F is said to cover another set of functional dependencies 

E if every FD in E is also in F+; that is, if every dependency in E can be inferred from F; 

alternatively, we can say that E is covered by F.  

• Two sets of functional dependencies E and F are equivalent if E+ = F+. Therefore, 

equivalence means that every FD in E can be inferred from F, and every FD in F can be 

inferred from E; that is, E is equivalent to F if both the conditions E covers F and F covers 

E hold. 

• We can determine whether F covers E by calculating X+ with respect to F for each FD X 

→ Y in E, and then checking whether this X+ includes the attributes in Y. If this is the case 

for every FD in E, then F covers E.   

 

Problem 1: 

Consider two sets of FDs, F and G, F = {A → B, B → C, AC→D} and G = {A→B, B→C, 

A→D}  Are F and G equivalent? 

Take the attributes from the LHS of FDs in F and compute attribute closure for each using 

FDs in G: 
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A+   using  G = ABCD;   A →  A;   A → B;   A →C;    A → D (Augmenting A  to both sides 

of A→C, AA→AC, ie A→AC from transitive rule A→AC and AC→D we get A→D)   B+   

using  G = BC; B →  B; B -> C; 

AC+  using   G = ABCD; AC → A; AC→ B; AC →  C; AC →  D; 

 

Notice that all FDs in F (highlighted) can be inferred using FDs in G. To see if all FDs in G 

are inferred by F, compute attribute closure for attributes on the LHS of FDs in G using FDs 

in F: 

 

A+ using F = ABCD;  A →  A; A →  B; A→ C; A→  D; 

B+ using F = BC;  B →  B; B →  C; 

 

Since all FDs in F can be obtained from G and vice versa, we conclude that F and G are 

equivalent. 

 

3. Minimal Sets of Functional Dependencies. 

 

• A minimal cover of a set of functional dependencies E is a set of functional dependencies 

F that satisfies the property that every dependency in E is in the closure F+ of F. In 

addition, this property is lost if any dependency from the set F is removed; F must have no 

redundancies in it, and the dependencies in F are in a standard form. 

• The set of functional dependencies F to be minimal if it satisfies the following conditions: 

1. Every dependency in F has a single attribute for its right-hand side. 

2. We cannot replace any dependency X → A in F with a dependency Y → A, where Y is a   

proper subset of X, and still have a set of dependencies that is equivalent to F. 

3. We cannot remove any dependency from F and still have a set of dependencies that is 

equivalent to F. 

 

Algorithm 16.2. Finding a Minimal Cover F for a Set of Functional Dependencies E  

Input: A set of functional dependencies E. 

1. Set F := E. 

2. Replace each functional dependency X→{A1, A2, ..., An} in F by the n functional 

dependencies X→A1, X→A2, ..., X→An. 

3. For each functional dependency X→A in F for each attribute B that is an element of X        

if { {F – {X→A} } ∪ { (X – {B} ) →A} } is equivalent to F then replace X→A with              

(X – {B} ) →A in F. 

4. For each remaining functional dependency X→A in F if {F – {X→A} } is equivalent to F, 

     then remove X→A from F. 

 

Example 1: Let the given set of FDs be E : {B→A, D→A, AB→D}.We have to find the 

minimal cover of E. 
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• Step1:Break down the RHS of each functional dependency into a single attribute ,here 

all  RHS attribute are single. E : {B→A, D→A, AB→D}. 

• In step 2 we need to determine if AB→D has any redundant attribute on the left-hand side; 

that is, can it be replaced by B→D or A→D?  

Consider B →A, by augmenting  B on both sides , we have BB → AB, or B→AB .  

Hence by the transitive rule we get B → D.  Because B→AB and  AB→D . 

• We now have E= {B→A, D→A, B→D}. No further reduction is possible in step 2 since all 

FDs have a single attribute on the left-hand side. 

• In step 3 we look for a redundant FD in E. By using the transitive rule on B → D and D → 

A, we derive B → A. Hence B → A is redundant in E and can be eliminated. 

• Therefore, the minimal cover of E is {B→D, D→A}. 

 

 

Example 2: Given the set of FDs G: {A → BCDE, CD → E}. Find a minimal cover for G. 

• The given FDs are NOT in the canonical form. So we first convert them into: 

     E: {A → B, A→ C, A→ D, A→ E, CD → E}. 

• In step 2 of the algorithm, for CD → E, neither C nor D is extraneous on the left-hand 

side, since we cannot show that C → E or D → E from the given FDs. Hence we cannot 

replace it with either. 

• In step 3, we want to see if any FD is redundant. Since A→ CD and CD → E, by transitive 

rule (IR3), we get A→ E. Thus, A→ E is redundant in G. 

• So we are left with the set F, equivalent to the original set G as: {A → B, A→ C, A→ D, 

CD → E}. F is the minimum cover. The first three FDs can be combined using the union 

rule (IR5). Minimum cover of G is F: {A → BCD, CD → E}. 

 

Example 3: Find a minimal cover for the following set of functional dependencies:    

Relation R = (A, B, C, D, E, F)             

 F= { A  → C,  AC → D,  E  → ADF } 

• Step 1: Break down the RHS of each functional dependency into a single attribute : 

Fmin = { A  → C,  AC → D, E  → A,  E  → D,  E  → F }  

• Step 2,  Consider functional dependencies whose LHS has ≥ 2 attributes. Replace    

AC → D to A → D or  C → D ? 

By augmenting A to both sides of  A → C   ,We get AA →AC  ie  A→AC ,  Hence by 

transitive rule we get A→D   (    A→AC  and AC→D). 

Fmin = { A  → C,  A  → D, E  → A, E  → D,  E  → F   }  

• Step 3 :Minimize the redundancy  by removing unnecessary functional dependencies. 

    By using the transitive rule on E  → A and A  → D, we derive E  → D Hence E  → D is      

redundant and can be eliminated. 

     Fmin = { A  → C,  A  → D, E  → A,  E  → F } 

• Minimal cover = { A  → CD, E  → AF } 
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Algorithm 16.2(a). Finding a Key K for R Given a set F of Functional Dependencies 

Input: A relation R and a set of functional dependencies F on the attributes of R. 

1. Set K := R. 

2. For each attribute A in K {compute (K – A)+ with respect to F; if (K – A)+ contains all the 

attributes in R, then set K := K – {A} }; 

 

 

 

 
 

Example:  Let R=(A,B,C) a relation and F={A-->B, B-->C} a set of dependencies for this 

relation.  

            1) Find a canditate key in R. 

            2) Is R in BCNF? Justify your answer.  

            3) Find the possible violations of BCNF for R.  

            4) If R is not in BCNF, give a decomposition of R in relations that will be in BCNF. 

 

 Solution:  

 1) We apply the properties of functional dependencies to prove that A→{A,B,C}. Thus, A is 

a candidate key in R. 

 2)  R is not in BCNF because it is not in 3NF  

 3)  There is transitive dependency B→C.  

 4)  A decomposition in BCNF is : R1=(A,B) and  R2(B,C). 
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16.2 Properties of Relational Decompositions 

 

16.2.1 Relation Decomposition and Insufficiency of Normal Forms. 
 

• The relational database design algorithm starts from a single universal relation schema R 

= {A1, A2, ..., An} that includes all the attributes of the database. 

• The universal relation assumption is that every attribute name is unique. 

•  The set F of functional dependencies that should hold on the attributes of R is specified by 

the database designers and is made available to the design algorithms.  

• Using the functional dependencies, the algorithms decompose the universal relation 

schema R into a set of relation schemas D = {R1, R2, ..., Rm} that will become the 

relational database schema; D is called a decomposition of R. 

 

 
 

• Each attribute in R will appear in at least one relation schema Ri in the decomposition so 

that no attributes are lost; This is called the attribute preservation condition of a 

decomposition. 

• Another goal of decomposition is to have each individual relation Ri in the decomposition 

D be in BCNF or 3NF.  Additional properties of decomposition are needed to prevent 

from generating spurious tuples 

 

16.2.2 Dependency Preservation Property of a Decomposition 
 

• Functional dependency X→Y specified in F either appeared directly in one of the relation 

schemas Ri in the decomposition D or could be inferred from the dependencies that appear 

in some Ri. Informally, this is the dependency preservation condition. 

• Definition. Given a set of dependencies F on R, the projection of F on Ri, denoted by 

πRi(F) where Ri is a subset of R, is the set of dependencies X→Y in F+ such that the 

attributes in X ∪ Y are all contained in Ri.  

The decomposition D = {R1, R2, ..., Rm} of R is dependency-preserving with respect to 

F if the union of the projections of F on each Ri in D is equivalent to F; that is,            

((πR1(F)) ∪ ... ∪ (πRm(F)))+ = F+. 

• If a decomposition is not dependency-preserving, some dependency is lost in the 

decomposition. To check that a lost dependency holds, we must take the JOIN of two or 

more relations in the decomposition to get a relation  

• An example of a decomposition that does not preserve dependencies is shown in the 

following  Figure , in which the functional dependency FD2 is lost when LOTS1A is 

decomposed into {LOTS1AX, LOTS1AY}. 
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• The decompositions in follwoing Figure are dependency-preserving.  

 
 

• Claim 1. It is always possible to find a dependency-preserving decomposition D with 

respect to F such that each relation Ri in D is in 3NF. 

 

16.2.3 Nonadditive (Lossless) Join Property of a Decomposition 

 

• Decomposition D should possess nonadditive join property, which ensures that no 

spurious tuples are generated when a NATURAL JOIN operation is applied to the 

relations resulting from the decomposition. 

• Definition. Formally, a decomposition D = {R1, R2, ..., Rm} of R has the lossless 

(nonadditive) join property with respect to the set of dependencies F on R if, for every 

relation state r of R that satisfies F, the following holds, where * is the NATURAL JOIN 

of all the relations in D:  *(πR1(r), ..., πRm(r)) = r. 

• Algorithm 16.3. Testing for Nonadditive Join Property 

Input: A universal relation R, a decomposition D = {R1, R2, ..., Rm} of R, and a set F of 

functional dependencies. 
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1. Create an initial matrix S with one row i for each relation Ri in D, and one column j for 

each attribute Aj in R. 

2. Set S(i, j):= bij for all matrix entries. 

3. For each row i representing relation schema Ri  

   {  for each column j representing attribute Aj 

            {if (relation Ri includes attribute Aj) then set S(i, j):= aj; 

             }; 

   };  

4. Repeat the following loop until a complete loop execution results in no changes to S 

    { for each functional dependency X→Y in F 

          { for all rows in S that have the same symbols in the columns corresponding to         

attributes in X 

      { make the symbols in each column that correspond to an attribute in Y be the same 

in all these rows as follows:  

        If any of the rows has an a symbol for the column, set the other rows to that same a 

symbol in the column. 

        If no a symbol exists for the attribute in any of the rows, choose one of the b 

symbols that appears in one of the rows for the attribute and set the other rows to 

that same b symbol in the column  

     ;}  

; }  

   ; }; 

5. If a row is made up entirely of a  symbols, then the decomposition has the nonadditive join 

property; otherwise, it does not. 

 

• Figure 16.1(a) shows how Algorithm16.3 can be appiled for the decomposition of the 

EMP_PROJ relation schema into two relation schemas EMP_PROJ1 and EMP_LOCS. 

The loop in step 4 of the algorithm cannot change any b symbols to a symbols; hence, the 

resulting matrix S does not have a row with all a symbols, and so the decomposition does 

not have the nonadditive join property. 

• Figure 16.1(b) shows another decomposition of EMP_PROJ (into EMP, PROJECT, and 

WORKS_ON) that does have the nonadditive join property. 

• Figure 16.1(c) shows how we apply the algorithm to that decomposition. Once a row 

consists only of a symbols, we conclude that the decomposition has the nonadditive join 

property, and we can stop applying the functional dependencies (step 4 in the algorithm) to 

the matrix S. 
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16.2.4 Testing Binary Decompositions for the Nonadditive Join Property 

 

• Algorithm for testing non additive join property allows us to test whether a particular 

decomposition D into n relations obeys the nonadditive join property with respect to a set 

of functional dependencies F. There is a special case of a decomposition called a binary 

decomposition— decomposition of a relation R into two relations. 
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• Property NJB (Nonadditive Join Test for Binary Decompositions). A decomposition  

D = {R1, R2} of R has the lossless (nonadditive) join property with respect to a set of 

functional dependencies F on R if and only if either  

The FD ((R1 ∩ R2)→(R1 – R2)) is in F+,   or  

 The FD ((R1 ∩ R2)→(R2 – R1)) is in F+. 

 

16.2.5 Successive Nonadditive Join Decompositions 

 

Claim 2 (Preservation of Nonadditivity in Successive Decompositions).  

If a decomposition D = {R1, R2, ..., Rm} of R has the nonadditive (lossless) join property with 

respect to a set of functional dependencies F on R, and if a decomposition Di = {Q1, Q2, ..., 

Qk} of Ri has the nonadditive join property with respect to the projection of F on Ri, then the 

decomposition D2 = {R1, R2,..., Ri−1, Q1, Q2, ..., Qk, Ri+1, ..., Rm} of R has the nonadditive 

join property with respect to F. 

 

16.3 Algorithms for Relational Database Schema Design 

 
16.3.1 Dependency-Preserving Decomposition into 3NF Schemas 
 

Algorithm 16.4. Relational Synthesis into 3NF with Dependency Preservation Input: A 

universal relation R and a set of functional dependencies F on the attributes of R. 

1. Find a minimal cover G for F . 

2. For each left-hand-side X of a functional dependency that appears in G, create a relation 

schema in D with attributes {X ∪ {A1} ∪ {A2} ... ∪ {Ak} }, where X→A1, X→A2, ..., 

X→Ak are the only dependencies in G with X as the left-hand-side (X is the key of this 

relation); 

3. Place any remaining attributes (that have not been placed in any relation) in a single 

relation schema to ensure the attribute preservation property. 

 

 

Example: Consider the following universal relation: 

 U(Emp_ssn, Pno, Esal, Ephone, Dno, Pname, Plocation) 

 

The following dependencies are present: 

FD1: Emp_ssn → {Esal, Ephone, Dno} 

FD2: Pno → { Pname, Plocation} 

FD3: Emp_ssn, Pno → {Esal, Ephone, Dno, Pname, Plocation} 

 

• The set of given FDs  F= {Emp_ssn → Esal, Ephone, Dno; Pno→Pname, Plocation; 

Emp_ssn, Pno→Esal, Ephone, Dno, Pname, Plocation}. 

• Step 1: By applying the minimal cover Algorithm in step 3 we see that Pno is a redundant 

attribute in Emp_ssn, Pno → Esal, Ephone, Dno. Moreover, Emp_ssn is redundant in 
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Emp_ssn, Pno→Pname, Plocation. Hence the minimal cover consists of FD1 and FD2 

only (FD3 being completely redundant) as follows. 

Minimal cover G: {Emp_ssn → Esal, Ephone, Dno;   Pno → Pname, Plocation} 

• Step 2: We get a 3NF design consisting of two relations with keys Emp_ssn and Pno as 

follows: 

R1 (Emp_ssn, Esal, Ephone, Dno) 

R2 (Pno, Pname, Plocation) 

• These two relations might have lost the original information contained in the key of the 

universal relation U (namely, that there are certain employees working on certain projects 

in a many-to-many relationship). 

• The relational synthesis algorithm, preserve the original dependencies, it makes no 

guarantee of preserving all of the information. Hence, the resulting design is a lossy 

design. 

 

16.3.2 Nonadditive Join Decomposition into BCNF Schemas. 

 

• This algorithm decomposes a universal relation schema R = {A1, A2, ..., An} into a 

decomposition D = {R1, R2, ..., Rm} such that each Ri is in BCNF and the decomposition      

D has the lossless join property with respect to F.. 

 

Algorithm. Relational Decomposition into BCNF with Nonadditive Join Property 

 

Input: A universal relation R and a set of functional dependencies F on the attributes of R. 

1.  Set D := {R} ; 

2.  While there is a relation schema Q in D that is not in BCNF do 

     { 

         choose a relation schema Q in D that is not in BCNF; 

         find a functional dependency X→Y in Q that violates BCNF; 

         replace Q in D by two relation schemas (Q – Y) and (X ∪ Y); 

    } ; 

 

16.3.3 Dependency Preserving and Nonadditive (Lossless) Join 

Decomposition into 3NF Schemas. 

This algorithm yields a decomposition D of R that does the following: 

• Preserves dependencies 

•  Has the nonadditive join property 

•  Is such that each resulting relation schema in the decomposition is in 3NF 

Algorithm 16.6. Relational Synthesis into 3NF with Dependency Preservation and 

Nonadditive Join Property 

Input: A universal relation R and a set of functional dependencies F on the attributes of R. 

1. Find a minimal cover G for F . 
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2. For each left-hand-side X of a functional dependency that appears in G, create a relation 

schema in D with attributes {X ∪ {A1} ∪ {A2} ... ∪ {Ak} }, where X→A1, X→A2, ..., 

X→Ak are the only dependencies in G with X as left-hand-side (X is the key of this 

relation). 

3. If none of the relation schemas in D contains a key of R, then create one more relation 

schema in D that contains attributes that form a key of R. 

4. Eliminate redundant relations from the resulting set of relations in the relational database 

schema. A relation R is considered redundant if R is a projection of another relation S in 

the schema;  

 

Example: Consider the following universal relation: 

 U(Emp_ssn, Pno, Esal, Ephone, Dno, Pname, Plocation) 

 

The following dependencies are present: 

FD1: Emp_ssn → {Esal, Ephone, Dno} 

FD2: Pno → { Pname, Plocation} 

FD3: Emp_ssn, Pno → {Esal, Ephone, Dno, Pname, Plocation} 

 

• Step 1: By applying the minimal cover Algorithm in step 3 we see that Pno is a redundant 

attribute in Emp_ssn, Pno → Esal, Ephone, Dno. Moreover, Emp_ssn is redundant in 

Emp_ssn, Pno→Pname, Plocation. Hence the minimal cover consists of FD1 and FD2 

only (FD3 being completely redundant) as follows. 

Minimal cover G: {Emp_ssn → Esal, Ephone, Dno;   Pno → Pname, Plocation} 

• Step 2: We get a 3NF design consisting of two relations with keys Emp_ssn and Pno as 

follows: 

R1 (Emp_ssn, Esal, Ephone, Dno) 

R2 (Pno, Pname, Plocation) 

• Step 3, we will generate a relation corresponding to the key {Emp_ssn, Pno}. Hence, the 

resulting design contains: 

R1 (Emp_ssn , Esal, Ephone, Dno) 

R2 (Pno, Pname, Plocation) 

R3 (Emp_ssn, Pno) 

This design achieves both the desirable properties of dependency preservation and 

nonadditive join. 

 

Example 2 Consider the relation schema LOTS1A. Assume that this relation is given as a 

universal relation with the following functional dependencies: 

FD1: Property_id→Lot#, County, Area 

FD2: Lot#, County→Area, Property_id 

FD3: Area→County 

• For ease of reference, let us abbreviate the above attributes with the first letter for each and 

represent the functional dependencies as the set 

     F : { P → LCA, LC → AP, A → C }. 
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• Step 1: If we apply the minimal cover Algorithm   to F, We get 

     F : {P → L, P → C, P → A, LC → A, LC → P, A → C}. 

In the set F, P→A can be inferred from P→LC and LC→A; hence P→A by transitivity 

and is therefore redundant.  

Thus, one possible minimal cover is Minimal cover GX: {P → LC, LC → AP, A → C }. 

• Step 2: We produce design X (before removing redundant relations) using the above 

minimal cover as 

     Design X:   R1 (P, L, C),   R2 (L, C, A, P), and  R3 (A, C). 

• In step 4 of the algorithm, we find that R3 is subsumed by R2 (that is, R3 is always a 

projection of R2 and R1 is a projection of R2 as well. Hence both of those relations are 

redundant. Thus the 3NF schema that achieves both of the desirable properties is (after 

removing redundant relations) 

    Design X: R2 (L, C, A, P). or, in other words it is identical to the relation                 

LOTS1A  (Lot#,   County, Area, Property_id) that we had determined to be in 3NF . 

 

 

16.4 About Nulls, Dangling Tuples,  
 

• The tuple which affects the resultant of the relation on applying different forms of Join is 

referred to as dangling tuple. 

• When some tuples have NULL values for attributes that will be used to join individual 

relations leads to problem. To illustrate this, consider the database shown in Figure 

16.2(a), where two relations EMPLOYEE and DEPARTMENT are shown. The last two 

employee tuples ‘Berger’ and ‘Benitez’ represent newly hired employees who have not yet 

been assigned to a department. If we apply the NATURAL JOIN operation on 

EMPLOYEE and DEPARTMENT (Figure 16.2(b)), two employee tuples ‘Berger’ and 

‘Benitez  will not appear in the result. These are called Dangling tuples 

• The OUTER JOIN operation, is used ie  LEFT OUTER JOIN of EMPLOYEE with 

DEPARTMENT, tuples in EMPLOYEE that have NULL for the join attribute will still 

appear in the result, joined with an imaginary tuple in DEPARTMENT that has NULLs 

for all its attribute values. Figure 16.2(c) shows the result. 
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Figure 16.2  (a) Some EMPLOYEE tuples have NULL for the join attribute Dnum. 

 
 

Figure 16.2  (b) Result of applying NATURAL JOIN to the EMPLOYEE and 

DEPARTMENT relations. 

 
Figure 16.2 

(c) Result of applying LEFT OUTER JOIN to EMPLOYEE and DEPARTMENT. 

 

 

16.6 Other Dependencies and Normal Forms 

 

16.6.1 Inclusion Dependencies 

Inclusion dependencies were defined in order to formalize two types of interrelational 

constraints: 

• The foreign key (or referential integrity) constraint cannot be specified as a functional or 

multivalued dependency because it relates attributes across relations. 

• The constraint between two relations that represent a class/subclass relationship also has 

no formal definition in terms of the functional, multivalued, and join dependencies. 
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• Definition. An inclusion dependency R.X < S.Y between two sets of attributes X of 

relation schema R, and Y of relation schema S specifies the constraint that, at any specific 

time when r is a relation state of R and s a relation state of S, we must have πX(r(R)) ⊆ πY 

(s(S)). 

• For example, we can specify the following inclusion dependencies on the relational 

schema in Figure 15.1: 

DEPARTMENT.Dmgr_ssn   <   EMPLOYEE.Ssn 

WORKS_ON.Ssn    <  EMPLOYEE.Ssn 

EMPLOYEE.Dnumber  <  DEPARTMENT.Dnumber 

PROJECT.Dnum  <  DEPARTMENT.Dnumber 

WORKS_ON.Pnumber  <  PROJECT.Pnumber 

DEPT_LOCATIONS.Dnumber  <  DEPARTMENT.Dnumber 

• All the preceding inclusion dependencies represent referential integrity constraints. We 

can also use inclusion dependencies to represent class/subclass relationships. For 

example, in the relational schema of Figure 9.6, we can specify the following inclusion 

dependencies: 

EMPLOYEE.Ssn  <  PERSON.Ssn 

ALUMNUS.Ssn   <   PERSON.Ssn 

STUDENT.Ssn     <  PERSON.Ssn 

 

16.6.2 Template Dependencies 

. 

• The idea behind template dependencies is to specify a template or example that defines 

each constraint or dependency. There are two types of templates: tuple-generating 

templates and constraint generating templates.  

• A template consists of a number of hypothesis tuples that are meant to show an example 

of the tuples that may appear in one or more relations. The other part of the template is the 

template conclusion. 

•  For tuple-generating templates, the conclusion is a set of tuples that must also exist in the 

relations if the hypothesis tuples are there. For constraint-generating templates, the 

template conclusion is a condition that must hold on the hypothesis tuples. Using 

constraint generating templates, we are able to define semantic constraints those that are 

beyond the scope of the relational model in terms of its data definition language and 

notation. 

• Figure 16.5 shows how we may define functional, multivalued, and inclusion 

dependencies by templates.  

• Figure 16.6 shows how we may specify the constraint that an employee’s salary cannot be 

higher than the salary of his or her direct supervisoron the relation schema EMPLOYEE 

in Figure 3.5. 
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16.6.3 Functional Dependencies Based on Arithmetic Functions and 

Procedures 

• Sometimes some attributes in a relation may be related via some arithmetic  functional 

relationship. If unique value of Y is associated with every X, we can still consider that the 

FD X→Y exists.  

• For example,  

       ORDER_LINE (Order#, Item#, Quantity, Unit_price, Extended_price, Discounted_price) 
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• In this relation, (Quantity,Unit_price) → Extended price by the formula 

Extended_price = Unit_price * Quantity. Hence, there is a unique value for 

Extended_price for every pair (Quantity, Unit_price ), and thus it conforms to the 

definition of functional dependency.  

 

16.6.4 Domain-Key Normal Form 

 

• The idea behind domain-key normal form (DKNF) is to specify  the ultimate normal 

form that takes into account all possible types of dependencies and constraints. 

• A relation schema is said to be in DKNF if all constraints and dependencies that should 

hold on the valid relation states can be enforced simply by enforcing the domain 

constraints and key constraints on the relation.  

• For a relation in DKNF, all database constraints are by simply checking that each attribute 

value in a tuple is of the appropriate domain and that every key constraint is enforced.  

• For example, consider a relation CAR(Make, Vin#) (where Vin# is the vehicle 

identification number) and another relation MANUFACTURE(Vin#,Country) (where 

Country is the country of manufacture). A general constraint may be of the following 

form: If the Make is either ‘Toyota’ or ‘Lexus,’ then the first character of the Vin# is a ‘J’ 

if the country of manufacture is ‘Japan’;  

 

 

Exercise:1 

Let R = (A,B,C,D) a relation and F= {C→D, C→A, B→C} a set of dependencies for this 

relation. 1) Find the candidate keys in R. 2) Identify the NF that R satisfies. Justify your 

anwer. 3) if R is not in BCNF, decompose it into a set of BCNF relations that preserve the 

dependencies.  

Solution 

 1. Candidate key : B  

2. R is in 2NF but not 3NF  

3. C→D and C→A both because of violations of BCNF. One way to obtain a (lossless) join 

preserving decomposition is to decompose R into AC, BC, and CD. 

 

Exercise:2 

 

Let R = (A,B,C,D) a relation and F= {B→C, D→A} a set of dependencies for this relation. 1) 

Find the canditate keys in R. 2) Identify the NF that R satisfies. Justify your anwer. 3) if R is 

not in BCNF, decompose it into a set of BCNF relations that preserve the dependencies. 

Solution  

1. Candidate key: BD 

2. R is in 1NF but not 2NF.  

3. Both B→C and D→A cause BCNF violations. The decompositions: AD, BC, BD 

(obtained by first decomposing to AD, BCD) are losseless and join preserving 

 


