
CANARA ENGINEERING COLLEGE
Benjanapadavu, Bantwal Taluk - 574219

Department of Computer Science & Engineering

VISION

To be recognized as a center of knowledge dissemination in Computer Science and Engineering

by imparting value-added education to transform budding minds into competent computer

professionals.

MISSION

M1. Provide a learning environment enriched with ethics that helps in enhancing problem

solving skills of students and, cater to the needs of the society and industry.

M2. Expose the students to cutting-edge technologies and state-of-the-art tools in the many

areas of Computer Science & Engineering.

M3. Create opportunities for all round development of students through co-curricular and

extra-curricular activities.

M4. Promote research, innovation and development activities among staff and students.

PROGRAMME EDUCATIONAL OBJECTIVES

PE01: Graduates will work productively as computer science engineers exhibiting ethical

qualities and leadership roles in multidisciplinary teams.

PEO2: Graduates will adapt to the changing technologies, tools and societal requirements.

PEO3: Graduates will design and deploy software that meets the needs of individuals and the

industries

PEO4: Graduates will take up higher education and/or be associated with the field so that they

can keep themselves abreast of Research & Development

PROGRAMME OUTCOMES

Engineering graduates in Computer Science and Engineering will be able to:

1. Engineering knowledge: Apply the knowledge of mathematics, science, engineering

fundamentals and an engineering specialization to the solution of complex engineering

problems.

2. Problem analysis: Identify, formulate, review research literature and analyze complex

engineering problems reaching substantiated conclusions using first principles of

mathematics, natural sciences and engineering sciences.

3. Design/development of solutions: Design solutions for complex engineering problems

and design system components or processes that meet the specific needs with appropriate

consideration for the public health and safety, and the cultural, societal and

environmental considerations.

4. Conduct investigations of complex problems: Use research-based knowledge and

research methods, including design of experiments, analysis and interpretation of data

and synthesis of the information to provide valid conclusions.

5. Modern tool usage: Select/Create and apply appropriate techniques, resources and

modern engineering and IT tools, including prediction and modeling to complex

engineering activities, taking comprehensive cognizance of their limitations.

6. The engineer and society: Apply reasoning informed by the contextual knowledge to

assess societal, health, safety, legal and cultural issues and the consequent

responsibilities relevant to the professional engineering practice.

7. Environment and Sustainability: Understand the impact of the professional

engineering solutions in societal and environmental contexts and demonstrate the

knowledge of and need for sustainable development.

8. Ethics: Apply ethical principles and commit to professional ethics and responsibilities

and norms of the relevant scientific and/or engineering practices.

9. Individual and team work: Function effectively as an individual and as a member or

leader in diverse teams and in multidisciplinary settings.

10. Communication: Communicate effectively on complex engineering activities with the

engineering community and with the society-at-large, such as being able to comprehend

and write effective reports and design documentation, make effective presentations and

give and receive clear instructions.

11. Project management and finance: Demonstrate knowledge and understanding of the

ber

and leader in a team to manage projects and in multidisciplinary environments.

12. Life-long learning: Recognize the need for and above have the preparation and ability

to engage in independent and life-long learning in the broadcast context of technological

changes.

PROGRAMME SPECIFIC OUTCOMES

1. Computer System Components: Apply the principles of computer system

architecture and software to design, develop and deploy computer subsystem.

2. Data Driven and Internet Applications: Apply the knowledge of data storage,

analytics and network architecture in designing Internet based applications.

DATA STRUCTURES AND APPLICATIONS

(Effective from the academic year 2018 -2019)

SEMESTER III

Course Code 18CS32 CIE Marks 40

Number of Contact Hours/Week 3:2:0 SEE Marks 60

Total Number of Contact Hours 50 Exam Hours 03

CREDITS 4

Course Learning Objectives: This course (18CS32) will enable students to:

 Explain fundamentals of data structures and their applications essential for programming/problem
solving.

 Illustrate linear representation of data structures: Stack, Queues, Lists, Trees and Graphs.

 Demonstrate sorting and searching algorithms.

 Find suitable data structure during application development/Problem Solving.

Module 1 Contact
Hours

Introduction: Data Structures, Classifications (Primitive & Non-Primitive), Data structure
Operations, Review of Arrays, Structures, Self-Referential Structures, and Unions. Pointers
and Dynamic Memory Allocation Functions. Representation of Linear Arrays in Memory,
Dynamically allocated arrays.

Array Operations: Traversing, inserting, deleting, searching, and sorting. Multidimensional
Arrays, Polynomials and Sparse Matrices.

Strings: Basic Terminology, Storing, Operations and Pattern Matching algorithms.
Programming Examples.

Textbook 1: Chapter 1: 1.2, Chapter 2: 2.2 - 2.7 Text Textbook 2: Chapter 1: 1.1 - 1.4,

Chapter 3: 3.1 - 3.3, 3.5, 3.7, Chapter 4: 4.1 - 4.9, 4.14 Reference 3: Chapter 1: 1.4 RBT:
L1, L2, L3

10

Module 2

Stacks: Definition, Stack Operations, Array Representation of Stacks, Stacks using Dynamic
Arrays, Stack Applications: Polish notation, Infix to postfix conversion, evaluation of postfix
expression.

Recursion - Factorial, GCD, Fibonacci Sequence, Tower of Hanoi, Ackerman's function.
Queues: Definition, Array Representation, Queue Operations, Circular Queues, Circular
queues using Dynamic arrays, Dequeues, Priority Queues, A Mazing Problem. Multiple
Stacks and Queues. Programming Examples.

Textbook 1: Chapter 3: 3.1 -3.7 Textbook 2: Chapter 6: 6.1 -6.3, 6.5, 6.7-6.10, 6.12, 6.13
RBT: L1, L2, L3

10

Module 3

Linked Lists: Definition, Representation of linked lists in Memory, Memory allocation;
Garbage Collection. Linked list operations: Traversing, Searching, Insertion, and Deletion.
Doubly Linked lists, Circular linked lists, and header linked lists. Linked Stacks and Queues.
Applications of Linked lists Polynomials, Sparse matrix representation. Programming
Examples

Textbook 1: Chapter 4: 4.1 4.6, 4.8, Textbook 2: Chapter 5: 5.1 5.10,
RBT: L1, L2, L3

10

Module 4

Trees: Terminology, Binary Trees, Properties of Binary trees, Array and linked
Representation of Binary Trees, Binary Tree Traversals - Inorder, postorder, preorder;
Additional Binary tree operations. Threaded binary trees, Binary Search Trees Definition,
Insertion, Deletion, Traversal, Searching, Application of Trees-Evaluation of Expression,

Programming Examples

Textbook 1: Chapter 5: 5.1 5.5, 5.7; Textbook 2: Chapter 7: 7.1 7.9
RBT: L1, L2, L3

10

Module 5

Graphs: Definitions, Terminologies, Matrix and Adjacency List Representation of Graphs,
Elementary Graph operations, Traversal methods: Breadth First Search and Depth First
Search.

Sorting and Searching: Insertion Sort, Radix sort, Address Calculation Sort.

Hashing: Hash Table organizations, Hashing Functions, Static and Dynamic Hashing.

Files and Their Organization: Data Hierarchy, File Attributes, Text Files and Binary Files,
Basic File Operations, File Organizations and Indexing

Textbook 1: Chapter 6: 6.1 6.2, Chapter 7:7.2, Chapter 8: 8.1-8.3

Textbook 2: Chapter 8: 8.1 8.7, Chapter 9: 9.1-9.3, 9.7, 9.9

Reference 2: Chapter 16: 16.1 - 16.7
RBT: L1, L2, L3

10

Course Outcomes: The student will be able to:

 Use different types of data structures, operations and algorithms

 Apply searching and sorting operations on files

 Use stack, Queue, Lists, Trees and Graphs in problem solving

 Implement all data structures in a high-level language for problem solving.

Question Paper Pattern:

 The question paper will have ten questions.

 Each full Question consisting of 20 marks

 There will be 2 full questions (with a maximum of four sub questions) from each module.

 Each full question will have sub questions covering all the topics under a module.

 The students will have to answer 5 full questions, selecting one full question from each module.

Textbooks:

1. Ellis Horowitz and Sartaj Sahni, Fundamentals of Data Structures in C, 2nd Ed, Universities
Press, 2014.

2. Seymour Lipschutz, Data Structures Schaum's Outlines, Revised 1st Ed, McGraw Hill, 2014.

Reference Books:

1. Gilberg & Forouzan, Data Structures: A Pseudo-code approach with C, 2nd Ed, Cengage
Learning,2014.

2. Reema Thareja, Data Structures using C, 3rd Ed, Oxford press, 2012.

3. Jean-Paul Tremblay & Paul G. Sorenson, An Introduction to Data Structures with Applications,
2nd Ed, McGraw Hill, 2013

4. A M Tenenbaum, Data Structures using C, PHI, 1989

5. Robert Kruse, Data Structures and Program Design in C, 2nd Ed, PHI, 1996.

COURSE OBJECTIVES:

This course will enable students to

1
Explain fundamentals of data structures and their applications essential for

programming/problem solving.

2 Analyze Linear Data Structures: Stack, Queues, Lists

3 Analyze Non-Linear Data Structures: Trees, Graphs

4 Analyze and Evaluate the sorting & searching algorithms

5 Assess appropriate data structure during program development/Problem Solving

COURSE OUTCOMES (COs):

SL.
NO

DESCRIPTION

The students are able to:

CO:1 Explain various types of data structures, sorting and searching operations on arrays.

CO:2
Develop the programs on operations like searching, insertion, deletion, traversing
mechanism on stack and queues.

CO:3 Apply the basic knowledge of linked list to solve real world problems.

CO:4
Develop the programs on operations like searching, insertion, deletion, traversing
mechanism on trees.

CO:5
Explain the basic graph algorithms and their analyses. Employ graphs and Sorting
and searching operations, to model engineering problems, when appropriate

DATA STRUCTURES AND APPLICATIONS 18CS32

SURESHA D and SATHISHA M S DEPT. of CSE, CANARA ENGINEERING COLLEGE, MANGALURU 1

MODULE 2: STACKS AND QUEUES

Contents

Sl. No. Topic Page No.

1 Stacks: Definition 2

2 Array Representation of Stacks 2

3 Stack Operations 3

4 Stacks using Dynamic Arrays 4

5 Stack Applications: Polish notation 6

6 Infix to postfix conversion 8

7 Evaluation of postfix expression. 10

8 Recursion – Factorial 13

9 GCD 14

10 Fibonacci Sequence 15

11 Tower of Hanoi 15

12 Ackerman's function 18

13 Queues: Definition 19

14 Array Representation 19

15 Queue Operations 20

16 Circular Queues 23

17 Circular queues using Dynamic arrays 25

18 Dequeues 28

19 Priority Queues 29

20 Multiple Stacks and Queues 33

21
Web Links

36

22
Question Bank

37

23
References

39

DATA STRUCTURES AND APPLICATIONS 18CS32

SURESHA D and SATHISHA M S DEPT. of CSE, CANARA ENGINEERING COLLEGE, MANGALURU 2

STACKS

DEFINITION

“A stack is an ordered list in which insertions (pushes) and deletions (pops) are made at one

end called the top.”

Given a stack S= (a0, ... ,an-1), where a0 is the bottom element, an-1 is the top element, and ai is

on top of element ai-1, 0 < i < n.

Figure: Inserting and deleting elements in a stack

As shown in above figure, the elements are added in the stack in the order A, B, C, D, E,

then E is the first element that is deleted from the stack and the last element is deleted from

stack is A. Figure illustrates this sequence of operations.

Since the last element inserted into a stack is the first element removed, a stack is also known

as a Last-In-First-Out (LIFO) list.

ARRAY REPRESENTATION OF STACKS

• Stacks may be represented in the computer in various ways such as one-way linked list

(Singly linked list) or linear array.

• Stacks are maintained by the two variables such as TOP and MAX_STACK_ SIZE.

• TOP which contains the location of the top element in the stack. If TOP= -1, then it indicates

stack is empty.

• MAX_STACK_SIZE which gives maximum number of elements that can be stored in stack.

Stack can represented using linear array as shown below

DATA STRUCTURES AND APPLICATIONS 18CS32

SURESHA D and SATHISHA M S DEPT. of CSE, CANARA ENGINEERING COLLEGE, MANGALURU 3

STACK OPERATIONS

Implementation of the stack operations as follows.

1. Stack Create

Stack CreateS(maxStackSize)::=

#define MAX_STACK_ SIZE 100 /* maximum stack size*/

typedef struct

{

int key;

/* other fields */

} element;

element stack[MAX_STACK_SIZE]; int top = -1;

The element which is used to insert or delete is specified as a structure that consists of only a

key field.

2. Boolean IsEmpty(Stack)::= top < 0;

3. Boolean IsFull(Stack)::= top >= MAX_STACK_SIZE-1;

The IsEmpty and IsFull operations are simple, and is implemented directly in the program

push and pop functions. Each of these functions assumes that the variables stack and top are

global.

4. Push()

Function push checks whether stack is full. If it is, it calls stackFull(), which prints an error

message and terminates execution. When the stack is not full, increment top and assign item

to stack [top].

void push(element item)

{ /* add an item to the global stack */

if (top >= MAX_STACK_SIZE-1)

stackFull();

stack[++top] = item;

}

DATA STRUCTURES AND APPLICATIONS 18CS32

SURESHA D and SATHISHA M S DEPT. of CSE, CANARA ENGINEERING COLLEGE, MANGALURU 4

5. Pop()

Deleting an element from the stack is called pop operation. The element is deleted only from

the top of the stack and only one element is deleted at a time.

element pop ()

{ /*delete and return the top element from the stack */

if (top == -1)

return stackEmpty(); /*returns an error key */

return stack[top--];

}

6. stackFull()

The stackFull which prints an error message and terminates execution.

void stackFull()

{

fprintf(stderr, "Stack is full, cannot add element");

exit(EXIT_FAILURE);

}

STACKS USING DYNAMIC ARRAYS

The array is used to implement stack, but the bound (MAX_STACK_ SIZE) should be known

during compile time. The size of bound is impossible to alter during compilation hence this

can be overcome by using dynamically allocated array for the elements and then increasing

the size of array as needed.

Stack Operations using dynamic array

1. Stack CreateS()::=

typedef struct

{

int key; /* other fields */

} element;

element *stack;

MALLOC(stack, sizeof(*stack));

int capacity= 1;

int top= -1;

2. Boolean IsEmpty(Stack)::= top < 0;

3. Boolean IsFull(Stack)::= top >= capacity-1;

DATA STRUCTURES AND APPLICATIONS 18CS32

SURESHA D and SATHISHA M S DEPT. of CSE, CANARA ENGINEERING COLLEGE, MANGALURU 5

4. push()

Here the MAX_STACK_SIZE is replaced with capacity

void push(element item)

{ /* add an item to the global stack */

if (top >= capacity-1)

stackFull();

stack[++top] = item;

}

5. pop()

In this function, no changes are made.

element pop ()

{ /* delete and return the top element from the stack */

if (top == -1)

return stackEmpty(); /* returns an error key */

return stack[top--];

}

6. stackFull()

The new code shown below, attempts to increase the capacity of the array stack so that new

element can be added into the stack. Before increasing the capacity of an array, decide what

the new capacity should be.

In array doubling, array capacity is doubled whenever it becomes necessary to increase the

capacity of an array.

void stackFull()

{

REALLOC (stack, 2*capacity*sizeof(*stack));

capacity *= 2;

}

Stack full with array doubling

Analysis

In the worst case, the realloc function needs to allocate 2*capacity*sizeof (*stack) bytes of

memory and copy capacity *sizeof (*stack)) bytes of memory from the old array into the new

one. Under the assumptions that memory may be allocated in O(1) time and that a stack element

can be copied in O(1) time, the time required by array doubling is O(capacity).

Initially, capacity is 1.

DATA STRUCTURES AND APPLICATIONS 18CS32

SURESHA D and SATHISHA M S DEPT. of CSE, CANARA ENGINEERING COLLEGE, MANGALURU 6

Suppose that, if all elements are pushed in stack and the capacity is 2k for some k, k>O, then

the total time spent over all array doublings is O(∑ 𝟐𝒊𝒌
𝒊=𝟏) = O(2k+l) = O(2k).

Since the total number of pushes is more than 2k-1, the total time spend in array doubling is

O(n), where n is the total number of pushes. Hence, even with the time spent on array doubling

added in, the total run time of push over all n pushes is O(n).

STACK APPLICATIONS: POLISH NOTATION

Expressions: It is sequence of operators and operands that reduces to a single value after

evaluation is called an expression.

X = a / b – c + d * e – a * c

In above expression contains operators (+, –, /, *) operands (a, b, c, d, e).

Expression can be represented in in different format such as

 Prefix Expression or Polish notation

 Infix Expression

 Postfix Expression or Reverse Polish notation

Infix Expression: In this expression, the binary operator is placed in-between the operand. The

expression can be parenthesized or un- parenthesized.

Example: A + B

Here, A & B are operands and + is operand

Prefix or Polish Expression: In this expression, the operator appears before its operand.

Example: + A B

Here, A & B are operands and + is operand

Postfix or Reverse Polish Expression: In this expression, the operator appears after its

operand.

Example: A B +

Here, A & B are operands and + is operand

Precedence of the operators

The first problem with understanding the meaning of expressions and statements is finding out

the order in which the operations are performed.

DATA STRUCTURES AND APPLICATIONS 18CS32

SURESHA D and SATHISHA M S DEPT. of CSE, CANARA ENGINEERING COLLEGE, MANGALURU 7

Example: assume that a =4, b =c =2, d =e =3 in below expression

X = a / b – c + d * e – a * c

((4/2)-2) + (3*3)-(4*2) (4/ (2-2 +3)) *(3-4)*2

=0+9-8 = (4/3) * (-1) * 2

=1 OR = -2.66666

The first answer is picked most because division is carried out before subtraction, and

multiplication before addition. If we wanted the second answer, write expression differently

using parentheses to change the order of evaluation

X= ((a / (b – c + d)) * (e – a) * c

In C, there is a precedence hierarchy that determines the order in which operators are evaluated.

Below figure contains the precedence hierarchy for C.

DATA STRUCTURES AND APPLICATIONS 18CS32

SURESHA D and SATHISHA M S DEPT. of CSE, CANARA ENGINEERING COLLEGE, MANGALURU 8

• The operators are arranged from highest precedence to lowest. Operators with highest

precedence are evaluated first.

• The associativity column indicates how to evaluate operators with the same precedence. For

example, the multiplicative operators have left-to-right associativity. This means that the

expression a * b / c % d / e is equivalent to ((((a * b) / c) % d) / e)

• Parentheses are used to override precedence, and expressions are always evaluated from the

innermost parenthesized expression first.

INFIX TO POSTFIX CONVERSION

An algorithm to convert infix to a postfix expression as follows:

1. Fully parenthesize the expression.

2. Move all binary operators so that they replace their corresponding right parentheses.

3. Delete all parentheses.

Example: Infix expression: a/b -c +d*e -a*c

Fully parenthesized : ((((a/b)-c) + (d*e))-a*c))

: a b / e – d e * + a c *

Example [Parenthesized expression]: Parentheses make the translation process more difficult

because the equivalent postfix expression will be parenthesis-free.

The expression a*(b +c)*d which results abc +*d* in postfix. Figure shows the translation

process.

• The analysis of the examples suggests a precedence-based scheme for stacking and

unstacking operators.

DATA STRUCTURES AND APPLICATIONS 18CS32

SURESHA D and SATHISHA M S DEPT. of CSE, CANARA ENGINEERING COLLEGE, MANGALURU 9

• The left parenthesis complicates matters because it behaves like a low-precedence operator

when it is on the stack and a high-precedence one when it is not. It is placed in the stack

whenever it is found in the expression, but it is unstacked only when its matching right

parenthesis is found.

• There are two types of precedence, in-stack precedence (isp) and incoming precedence (icp).

Typedef enum { lparen rparen, plus, minus, times, divide, mod, eos, operand} precedence;

Precendence getToken(char *symbol, int *n)

{/*get the next token, symbol is the character representation, which is returned, the token is

represented by its enumerated value, which is returned in the function name*/

 *symbol=expr[(*n)++];

 switch(*symbol)

{

 case ‘(‘: return lparen;

 case ‘)‘: return rparen;

case ‘+‘: return lparen;

case ‘-‘: return minus;

case ‘/‘: return divide;

case ‘*‘: return times;

case ‘%‘: return mod;

case ‘ ‘: return eos;

default: return operand;

}

}

The declarations that establish the precedence’s are:

/* isp and icp arrays-index is value of precedence lparen rparen, plus, minus, times, divide,

mod, eos */

int isp[] = {0,19,12,12,13,13,13,0};

int icp[] = {20,19,12,12,13,13,13,0};

void postfix(void)

{

char symbol; precedence token;

int n = 0,top = 0; /* place eos on stack */

DATA STRUCTURES AND APPLICATIONS 18CS32

SURESHA D and SATHISHA M S DEPT. of CSE, CANARA ENGINEERING COLLEGE, MANGALURU 10

stack[0] = eos;

for (token = getToken(&symbol, &n); token != eos; token = getToken(&symbol,& n))

{

if (token == operand)

printf("%c", symbol);

else if (token == rparen)

{

while (stack[top] != lparen)

printToken(pop());

pop();

}

else {

while(isp[stack[top]] >= icp[token])

printToken(pop());

push(token);

}

}

while((token = pop ())!= eos)

printToken(token);

printf("\n");

}

Program: Function to convert from infix to postfix

Analysis of postfix: Let n be the number of tokens in the expression. Ө (n) time is spent

extracting tokens and outputting them. Time is spent in the two while loops, is Ө (n) as the

number of tokens that get stacked and unstacked is linear in n. So, the complexity of function

postfix is Ө (n).

EVALUATION OF POSTFIX EXPRESSION

• The evaluation process of postfix expression is simpler than the evaluation of infix

expressions because there are no parentheses to consider.

• To evaluate an expression, make a single left-to-right scan of it. Place the operands on a

stack until an operator is found. Then remove from the stack, the correct number of operands

for the operator, perform the operation, and place the result back on the stack and continue

DATA STRUCTURES AND APPLICATIONS 18CS32

SURESHA D and SATHISHA M S DEPT. of CSE, CANARA ENGINEERING COLLEGE, MANGALURU 11

this fashion until the end of the expression. We then remove the answer from the top of the

stack.

int eval(void)

{

precedence token;

char symbol;

int opl,op2, n=0;

int top= -1;

token = getToken(&symbol, &n);

while(token! = eos)

{

if (token == operand)

push(symbol-'0'); /* stack insert */

else {

op2 = pop(); /* stack delete */

opl = pop();

switch(token) {

case plus: push(opl+op2);

break;

case minus: push(opl-op2);

break;

case times: push(opl*op2);

break;

case divide: push(opl/op2);

break;

case mod: push(opl%op2);

}

}

token = getToken(&symbol, &n);

}

return pop(); /* return result */

}

Program: Function to evaluate a postfix expression

DATA STRUCTURES AND APPLICATIONS 18CS32

SURESHA D and SATHISHA M S DEPT. of CSE, CANARA ENGINEERING COLLEGE, MANGALURU 12

precedence getToken(char *symbol, int *n)

{

*symbol = expr[(*n)++];

switch (*symbol)

{

case '(' : return lparen;

case ')' : return rparen;

case '+' : return plus;

case '-' : return minus;

case '/' : return divide;

case '*' : return times;

case '%' : return mod;

case ' ' : return eos;

default: return operand;

}

}

Program: Function to get a token from the input string

• The function eval () contains the code to evaluate a postfix expression. Since an operand

(symbol) is initially a character, convert it into a single digit integer.

• To convert use the statement, symbol-'0'. The statement takes the ASCII value of symbol

and subtracts the ASCII value of '0', which is 48, from it. For example, suppose symbol =

'1. The character '1' has an ASCII value of 49. Therefore, the statement symbol-'0' produces

as result the number 1.

• The function getToken(), obtain tokens from the expression string. If the token is an

operand, convert it to a number and add it to the stack. Otherwise remove two operands

from the stack, perform the specified operation, and place the result back on the stack. When

the end of expression is reached, remove the result from the stack.

DATA STRUCTURES AND APPLICATIONS 18CS32

SURESHA D and SATHISHA M S DEPT. of CSE, CANARA ENGINEERING COLLEGE, MANGALURU 13

RECURSION

A recursive procedure

Suppose P is a procedure containing either a Call statement to itself or a Call statement to a

second procedure that may eventually result in a Call statement back to the original procedure

P. Then P is called a recursive procedure. So that the program will not continue to run

indefinitely, a recursive procedure must have the following two properties:

1. There must be certain criteria, called base criteria, for which the procedure does not call

itself.

2. Each time the procedure does call itself (directly or indirectly), it must be closer to the base

criteria.

Recursive procedure with these two properties is said to be well-defined.

A recursive function

A function is said to be recursively defined if the function definition refers to itself. A recursive

function must have the following two properties:

1. There must be certain arguments, called base values, for which the function does not refer

to itself.

2. Each time the function does refer to itself, the argument of the function must be closer to a

base value

A recursive function with these two properties is also said to be well-defined.

Factorial Function

“The product of the positive integers from 1 to n, is called "n factorial" and is denoted by n!.

n! = 1*2 * 3 ... (n - 2)*(n - 1)*n

It is also convenient to define 0! = 1, so that the function is defined for all nonnegative integers.

Definition: (Factorial Function)

a) If n = 0, then n! = 1.

b) If n > 0, then n! = n*(n - 1)!

Observe that this definition of n! is recursive, since it refers to itself when it uses (n - 1)!

(a) The value of n! is explicitly given when n = 0 (thus 0 is the base value)

(b) The value of n! for arbitrary n is defined in terms of a smaller value of n which is closer

to the base value 0.

DATA STRUCTURES AND APPLICATIONS 18CS32

SURESHA D and SATHISHA M S DEPT. of CSE, CANARA ENGINEERING COLLEGE, MANGALURU 14

The following are two procedures that each calculate n factorial.

1. Using for loop: This procedure evaluates N! Using an iterative loop process

Procedure: FACTORIAL (FACT, N)

This procedure calculates N! and returns the value in the variable FACT.

1. If N = 0, then: Set FACT: = 1, and Return.

2. Set FACT: = 1. [Initializes FACT for loop.]

3. Repeat for K = 1 to N.

Set FACT: = K*FACT.

[End of loop.]

4. Return.

2. Using recursive function: This is a recursive procedure, since it contains a call to itself

Procedure: FACTORIAL (FACT, N)

This procedure calculates N! and returns the value in the variable FACT.

1. If N = 0, then: Set FACT: = 1, and Return.

2. Call FACTORIAL (FACT, N - 1).

3. Set FACT: = N*FACT.

4. Return.

GCD

The greatest common divisor (GCD) of two integers m and n is the greatest integer that divides

both m and n with no remainder.

Procedure: GCD (M, N)

1. If (M % N) = 0, then set GCD=N and RETURN

2. Call GCD (N, M % N)

3. Return

DATA STRUCTURES AND APPLICATIONS 18CS32

SURESHA D and SATHISHA M S DEPT. of CSE, CANARA ENGINEERING COLLEGE, MANGALURU 15

Fibonacci sequence

The Fibonacci sequence (usually denoted by F0, F1, F2.) is as follows:

0, 1, 1, 2,3,5,8, 13, 21, 34, 55

That is, F0 = 0 and F1 = 1 and each succeeding term is the sum of the two preceding terms.

Definition: (Fibonacci Sequence)

a) If n = 0 or n = 1, then Fn = n

b) If n > 1, then Fn= Fn-2+ Fn-1

Here

(a) The base values are 0 and 1

(b) The value of Fn is defined in terms of smaller values of n which are closer to the base

values.

A procedure for finding the nth term Fn of the Fibonacci sequence follows.

Procedure: FIBONACCI (FIB, N)

This procedure calculates FN and returns the value in the first parameter FIB.

1. If N = 0 or N = 1, then: Set FIB: = N, and Return.

2. Call FIBONACCI (FIBA, N - 2).

3. Call FIBONACCI (FIBB, N - I).

4. Set FIB: = FIBA + FIBB.

5. Return.

Tower of Hanoi

Problem description

Suppose three pegs, labelled A, Band C, are given, and suppose on peg A, a finite number n of

disks with decreasing size are placed.

The objective of the game is to move the disks from peg A to peg C using peg B as an auxiliary.

The rules of the game are as follows:

1. Only one disk may be moved at a time. Only the top disk on any peg may be moved to

any other peg.

2. At no time can a larger disk be placed on a smaller disk.

DATA STRUCTURES AND APPLICATIONS 18CS32

SURESHA D and SATHISHA M S DEPT. of CSE, CANARA ENGINEERING COLLEGE, MANGALURU 16

We write A→B to denote the instruction "Move top disk from peg A to peg B"

Example: Towers of Hanoi problem for n = 3.

Solution: Observe that it consists of the following seven moves

1. Move top disk from peg A to peg C.

2. Move top disk from peg A to peg B.

3. Move top disk from peg C to peg B.

4. Move top disk from peg A to peg C.

5. Move top disk from peg B to peg A.

6. Move top disk from peg B to peg C.

7. Move top disk from peg A to peg C.

In other words,

n=3: A→C, A→B, C→B, A→C, B→A, B→C, A→C

For completeness, the solution to the Towers of Hanoi problem for n = 1 and n = 2 n=l: A→C

DATA STRUCTURES AND APPLICATIONS 18CS32

SURESHA D and SATHISHA M S DEPT. of CSE, CANARA ENGINEERING COLLEGE, MANGALURU 17

n=2: A→B, A→C, B→C

The Towers of Hanoi problem for n > 1 disks may be reduced to the following sub-problems:

(1) Move the top n - 1 disks from peg A to peg B

(2) Move the top disk from peg A to peg C: A→C.

(3) Move the top n - 1 disks from peg B to peg C.

The general notation

• TOWER (N, BEG, AUX, END) to denote a procedure which moves the top n disks from

the initial peg BEG to the final peg END using the peg AUX as an auxiliary.

• When n = 1, the solution:

TOWER (1, BEG, AUX, END) consists of the single instruction BEG→END

• When n > 1, the solution may be reduced to the solution of the following three sub-

problems:

(a) TOWER (N - I, BEG, END, AUX)

(b)TOWER (l, BEG, AUX, END) or BEG → END

(c) TOWER (N - I, AUX, BEG, END)

Procedure: TOWER (N, BEG, AUX, END)

This procedure gives a recursive solution to the Towers of Hanoi problem for N disks.

1. If N=l, then:

(a) Write: BEG → END.

(b) Return.

[End of If structure.]

2. [Move N - 1 disks from peg BEG to peg AUX.]

Call TOWER (N - 1, BEG, END, AUX).

3. Write: BEG → END.

4. [Move N - 1 disks from peg AUX to peg END.]

Call TOWER (N - 1, AUX, BEG, END).

DATA STRUCTURES AND APPLICATIONS 18CS32

SURESHA D and SATHISHA M S DEPT. of CSE, CANARA ENGINEERING COLLEGE, MANGALURU 18

5. Return.

Example: Towers of Hanoi problem for n = 4

Ackermann function

The Ackermann function is a function with two arguments each of which can be assigned any

nonnegative integer: 0, 1, 2,....

Definition: (Ackermann Function)

(a) If m = 0, then A (m, n) = n + 1.

(b) If m ≠ 0 but n = 0, then A(m, n) = A(m - 1, 1)

(c) If m ≠ 0 and n ≠ 0, then A(m, n) = A(m - 1, A(m, n - 1))

FIND A(1,3)

A(1,3)=A(0, A(1,2))

 A(1,2)= A(0, A(1,1))

 A(1,1)= A(0, A(1,0))

 A(1,0)= A(0, 1)

 A(0, 1)=1+1=2

 A(1,0)=2

 A(1,1)=A(0,2)

 A(0,2)=2+1=3

 A(1,1)=3

 A(1,2)=A(0,3)

 A(0,3)=3+1=4

 A(1,3)=4

A(1,3)=A(0,4)

 A(0,4)=4+1=5

DATA STRUCTURES AND APPLICATIONS 18CS32

SURESHA D and SATHISHA M S DEPT. of CSE, CANARA ENGINEERING COLLEGE, MANGALURU 19

QUEUES

DEFINITION

• “A queue is an ordered list in which insertions (additions, pushes) and deletions

(removals and pops) take place at different ends.”

• The end at which new elements are added is called the rear, and that from which old

elements are deleted is called the front.

If the elements are inserted A, B, C, D and E in this order, then A is the first element deleted

from the queue. Since the first element inserted into a queue is the first element removed,

queues are also known as First-In-First-Out (FIFO) lists.

QUEUE REPRESENTATION USING ARRAY

• Queues may be represented by one-way lists or linear arrays.

• Queues will be maintained by a linear array QUEUE and two pointer variables: FRONT-

containing the location of the front element of the queue

 REAR-containing the location of the rear element of the queue.

• The condition FRONT = NULL will indicate that the queue is empty.

Figure indicates the way elements will be deleted from the queue and the way new elements

will be added to the queue.

• Whenever an element is deleted from the queue, the value of FRONT is increased by 1;

this can be implemented by the assignment FRONT:= FRONT + 1

• When an element is added to the queue, the value of REAR is increased by 1; this

can be implemented by the assignment REAR := REAR + 1

DATA STRUCTURES AND APPLICATIONS 18CS32

SURESHA D and SATHISHA M S DEPT. of CSE, CANARA ENGINEERING COLLEGE, MANGALURU 20

QUEUE OPERATIONS

Implementation of the queue operations as follows.

1. Queue Create

 Queue CreateQ(maxQueueSize) ::=

 #define MAX_QUEUE_ SIZE 100 /* maximum queue size */

typedef struct

 {

 int key; /* other fields */

 } element;

 element queue[MAX_QUEUE_ SIZE];

int rear = -1;

 int front = -1;

2. Boolean IsEmptyQ(queue) ::= front ==rear

3. Boolean IsFullQ(queue) ::= rear == MAX_QUEUE_SIZE-1

In the queue, two variables are used which are front and rear. The queue increments rear in

addq() and front in delete(). The function calls would be

addq (item); and item =delete();

4. addq(item)

void addq(element item)

 { /* add an item to the queue */

if (rear == MAX_QUEUE_SIZE-1)

 queueFull();

DATA STRUCTURES AND APPLICATIONS 18CS32

SURESHA D and SATHISHA M S DEPT. of CSE, CANARA ENGINEERING COLLEGE, MANGALURU 21

queue [++rear] = item;

 }

Program: Add to a queue

5. deleteq()

element deleteq()

 { /* remove element at the front of the queue */

 if (front == rear)

 return queueEmpty(); /* return an error key */

return queue[++front];

 }

Program: Delete from a queue

6. queueFull()

The queueFull function which prints an error message and terminates execution

void queueFull()

 {

 fprintf(stderr, "Queue is full, cannot add element");

exit(EXIT_FAILURE);

 }

Example: Job scheduling

• Queues are frequently used in creation of a job queue by an operating system. If the

operating system does not use priorities, then the jobs are processed in the order they enter

the system.

• Figure illustrates how an operating system process jobs using a sequential representation

for its queue.

Figure: Insertion and deletion from a sequential queue

DATA STRUCTURES AND APPLICATIONS 18CS32

SURESHA D and SATHISHA M S DEPT. of CSE, CANARA ENGINEERING COLLEGE, MANGALURU 22

Drawback of Queue

When item enters and deleted from the queue, the queue gradually shifts to the right as shown

in figure.

In this above situation, when we try to insert another item, which shows that the queue is full.

This means that the rear index equals to MAX_QUEUE_SIZE -1. But even if the space is

available at the front end, rear insertion cannot be done.

Overcome of Drawback using different methods

Method 1:

• When an item is deleted from the queue, move the entire queue to the left so that the first

element is again at queue[0] and front is at -1. It should also recalculate rear so that it is

correctly positioned.

• Shifting an array is very time-consuming when there are many elements in queue & queueFull

has worst case complexity of O(MAX_QUEUE_ SIZE)

DATA STRUCTURES AND APPLICATIONS 18CS32

SURESHA D and SATHISHA M S DEPT. of CSE, CANARA ENGINEERING COLLEGE, MANGALURU 23

Circular Queue

• It is “The queue which wrap around the end of the array.” The array positions are arranged in

a circle.

• In this convention the variable front is changed, front variable points one position counter

clockwise from the location of the front element in the queue. The convention for rear is

unchanged.

CIRCULAR QUEUES

• It is “The queue which wrap around the end of the array.” The array positions are arranged in

a circle as shown in figure.

• In this convention the variable front is changed, front variable points one position counter

clockwise from the location of the front element in the queue. The convention for rear is

unchanged.

Implementation of Circular Queue Operations

• When the array is viewed as a circle, each array position has a next and a previous

position. The position next to MAX-QUEUE-SIZE -1 is 0, and the position that

precedes 0 is MAX-QUEUE-SIZE -1.

• When the queue rear is at MAX_QUEUE_SIZE-1, the next element is inserted at

position 0.

• In circular queue, the variables front and rear are moved from their current position to

the next position in clockwise direction. This may be done using code

if (rear = = MAX_QUEUE_SIZE-1)

 rear = 0;

else rear++;

DATA STRUCTURES AND APPLICATIONS 18CS32

SURESHA D and SATHISHA M S DEPT. of CSE, CANARA ENGINEERING COLLEGE, MANGALURU 24

Addition & Deletion

• To add an element, increment rear one position clockwise and insert at the new position.

Here the MAX_QUEUE_SIZE is 8 and if all 8 elements are added into queue and that

can be represented in below figure (a).

• To delete an element, increment front one position clockwise. The element A is deleted

from queue and if we perform 6 deletions from the queue of Figure (b) in this fashion,

then queue becomes empty and that front =rear.

• If the element I is added into the queue as in figure (c), then rear needs to increment by

1 and the value of rear is 8. Since queue is circular, the next position should be 0 instead

of 8.

This can be done by using the modulus operator, which computes remainders.

(rear +1) % MAX_QUEUE_SIZE

void addq(element item)

{ /* add an item to the queue */

rear = (rear +1) % MAX_QUEUE_SIZE;

if (front == rear)

queueFull(); /* print error and exit */

queue [rear] = item;

}

Program: Add to a circular queue

element deleteq()

{ /* remove front element from the queue */ element item;

if (front == rear)

return queueEmpty(); /* return an error key */

front = (front+1)% MAX_QUEUE_SIZE;

DATA STRUCTURES AND APPLICATIONS 18CS32

SURESHA D and SATHISHA M S DEPT. of CSE, CANARA ENGINEERING COLLEGE, MANGALURU 25

return queue[front];

}

Program: Delete from a circular queue

Note:

• When queue becomes empty, then front =rear. When the queue becomes full and

front=rear. It is difficult to distinguish between an empty and a full queue.

• To avoid the resulting confusion, increase the capacity of a queue just before it becomes

full.

CIRCULAR QUEUES USING DYNAMIC ARRAYS

• A dynamically allocated array is used to hold the queue elements. Let capacity be the

number of positions in the array queue.

• To add an element to a full queue, first increase the size of this array using a function

realloc. As with dynamically allocated stacks, array doubling is used.

Consider the full queue of figure (a). This figure shows a queue with seven elements in an array

whose capacity is 8. A circular queue is flatten out the array as in Figure (b).

Figure (c) shows the array after array doubling by realloc

To get a proper circular queue configuration, slide the elements in the right segment (i.e.,

elements A and B) to the right end of the array as in figure (d)

DATA STRUCTURES AND APPLICATIONS 18CS32

SURESHA D and SATHISHA M S DEPT. of CSE, CANARA ENGINEERING COLLEGE, MANGALURU 26

To obtain the configuration as shown in figure (e), follow the steps

1) Create a new array newQueue of twice the capacity.

2) Copy the second segment (i.e., the elements queue [front +1] through queue

[capacity-1]) to positions in newQueue beginning at 0.

3) Copy the first segment (i.e., the elements queue [0] through queue [rear]) to positions in

newQueue beginning at capacity – front – 1.

Below program gives the code to add to a circular queue using a dynamically allocated array.

void addq(element item)

{ /* add an item to the queue

rear = (rear +1) % capacity;

if(front == rear)

queueFull(); /* double capacity */

queue[rear] = item;

}

Below program obtains the configuration of figure (e) and gives the code for queueFull. The

function copy (a,b,c) copies elements from locations a through b-1 to locations beginning at c.

void queueFull()

{ /* allocate an array with twice the capacity */

element *newQueue;

MALLOC (newQueue, 2 * capacity * sizeof(* queue));

/* copy from queue to newQueue */

int start = (front + 1) % capacity;

if (start < 2) /* no wrap around */

DATA STRUCTURES AND APPLICATIONS 18CS32

SURESHA D and SATHISHA M S DEPT. of CSE, CANARA ENGINEERING COLLEGE, MANGALURU 27

copy(queue+start, queue+start+capacity-1,newQueue);

else

{ /* queue wrap around */

copy(queue, queue+capacity, newQueue);

copy(queue, queue+rear+1, newQueue+capacity-start);

}

/* switch to newQueue*/

front = 2*capacity – 1;

rear = capacity – 2;

capacity * =2;

free(queue);

queue= newQueue;

}

Program: queueFull

DATA STRUCTURES AND APPLICATIONS 18CS32

SURESHA D and SATHISHA M S DEPT. of CSE, CANARA ENGINEERING COLLEGE, MANGALURU 28

DEQUEUES OR DEQUE

A deque (double ended queue) is a linear list in which elements can be added or removed at

either end but not in the middle.

Representation

• Deque is maintained by a circular array DEQUE with pointers LEFT and RIGHT, which

point to the two ends of the deque.

• Figure shows deque with 4 elements maintained in an array with N = 8 memory

locations.

• The condition LEFT = NULL will be used to indicate that a deque is empty.

DEQUE

 AAA BBB CCC DDD

1 2 3 4 5 6 7 8

 LEFT: 4 RIGHT: 7

There are two variations of a deque

1. Input-restricted deque is a deque which allows insertions at only one end of the list but

allows deletions at both ends of the list

2. Output-restricted deque is a deque which allows deletions at only one end of the list but

allows insertions at both ends of the list.

DATA STRUCTURES AND APPLICATIONS 18CS32

SURESHA D and SATHISHA M S DEPT. of CSE, CANARA ENGINEERING COLLEGE, MANGALURU 29

PRIORITY QUEUES

A priority queue is a collection of elements such that each element has been assigned a priority

and such that the order in which elements are deleted and processed comes from the following

rules:

(1) An element of higher priority is processed before any element of lower priority.

(2) Two elements with the same priority are processed according to the order in which they

were added to the queue.

A prototype of a priority queue is a timesharing system: programs of high priority are processed

first, and programs with the same priority form a standard queue.

Representation of a Priority Queue

1. One-Way List Representation of a Priority Queue

One way to maintain a priority queue in memory is by means of a one-way list, as follows:

1. Each node in the list will contain three items of information: an information field INFO,

a priority number PRN and a link number LINK.

2. A node X precedes a node Y in the list

a. When X has higher priority than Y

b. When both have the same priority but X was added to the list before Y. This means

that the order in the one-way list corresponds to the order of the priority queue.

Example:

• Below Figure shows the way the priority queue may appear in memory using linear arrays

INFO, PRN and LINK with 7 elements.

• The diagram does not tell us whether BBB was added to the list before or after DDD. On

the other hand, the diagram does tell us that BBB was inserted before CCC, because BBB

and CCC have the same priority number and BBB appears before CCC in the list.

DATA STRUCTURES AND APPLICATIONS 18CS32

SURESHA D and SATHISHA M S DEPT. of CSE, CANARA ENGINEERING COLLEGE, MANGALURU 30

The main property of the one-way list representation of a priority queue is that the element in

the queue that should be processed first always appears at the beginning of the one-way list.

Accordingly, it is a very simple matter to delete and process an element from our priority queue.

Algorithm to deletes and processes the first element in a priority queue

Algorithm: This algorithm deletes and processes the first element in a priority queue which

appears in memory as a one-way list.

1. Set ITEM:= INFO[START] [This saves the data in the first node.]

2. Delete first node from the list.

3. Process ITEM.

4. Exit.

Algorithm to add an element to priority queue

Adding an element to priority queue is much more complicated than deleting an element from

the queue, because we need to find the correct place to insert the element.

Algorithm: This algorithm adds an ITEM with priority number N to a priority queue which is

maintained in memory as a one-way list.

1. Traverse the one-way list until finding a node X whose priority number exceeds N. Insert

ITEM in front of node X.

2. If no such node is found, insert ITEM as the last element of the list.

DATA STRUCTURES AND APPLICATIONS 18CS32

SURESHA D and SATHISHA M S DEPT. of CSE, CANARA ENGINEERING COLLEGE, MANGALURU 31

The main difficulty in the algorithm comes from the fact that ITEM is inserted before node

X. This means that, while traversing the list, one must also keep track of the address of the

node preceding the node being accessed.

Example:

Consider the priority queue in Fig (a). Suppose an item XXX with priority number 2 is to be

inserted into the queue. We traverse the list, comparing priority numbers.

Fig (a)

Fig (b)

Observe that DDD is the first element in the list whose priority number exceeds that of XXX.

Hence XXX is inserted in the list in front of DDD, as pictured in Fig(b).

Observe that XXX comes after BBB and CCC, which have the same priority as XXX. Suppose

now that an element is to be deleted from the queue. It will be AAA, the first element in the

List. Assuming no other insertions, the next element to be deleted will be BBB, then CCC, then

XXX, and so on.

Array Representation of a Priority Queue

• Another way to maintain a priority queue in memory is to use a separate queue for each

level of priority (or for each priority number).

• Each such queue will appear in its own circular array and must have its own pair of

pointers, FRONT and REA R.

DATA STRUCTURES AND APPLICATIONS 18CS32

SURESHA D and SATHISHA M S DEPT. of CSE, CANARA ENGINEERING COLLEGE, MANGALURU 32

• If each queue is allocated the same amount of space, a two-dimensional array QUEUE

can be used instead of the linear arrays.

Observe that FRONT[K] and REAR[K] contain, respectively, the front and rear elements of

row K of QUEUE, the row that maintains the queue of elements with priority number K.

The following are outlines or algorithms for deleting and inserting elements in a priority queue

Algorithm: This algorithm deletes and processes the first element in a priority queue

maintained by a two-dimensional array QUEUE.

1. [Find the first non-empty queue.]

Find the smallest K such that FRONT[K] ≠ NULL.

2. Delete and process the front element in row K of QUEUE.

3. Exit.

Algorithm: This algorithm adds an ITEM with priority number M to a priority queue

maintained by a two-dimensional array QUEUE.

1. Insert ITEM as the rear element in row M of QUEUE.

2. Exit.

DATA STRUCTURES AND APPLICATIONS 18CS32

SURESHA D and SATHISHA M S DEPT. of CSE, CANARA ENGINEERING COLLEGE, MANGALURU 33

MULTIPLE STACKS AND QUEUES

• In multiple stacks, we examine only sequential mappings of stacks into an array. The

array is one dimensional which is memory[MEMORY_SIZE]. Assume n stacks are

needed, and then divide the available memory into n segments. The array is divided in

proportion if the expected sizes of the various stacks are known. Otherwise, divide the

memory into equal segments.

• Assume that i refers to the stack number of one of the n stacks. To establish this stack,

create indices for both the bottom and top positions of this stack. boundary[i] points to the

position immediately to the left of the bottom element of stack i, top[i] points to the top

element. Stack i is empty iff boundary[i]=top[i].

The declarations are:

#define MEMORY_SIZE 100 /* size of memory */

#define MAX_STACKS 10 /* max number of stacks plus 1 */

element memory[MEMORY_SIZE]; /* global memory declaration */ int top

[MAX_STACKS];

int boundary [MAX_STACKS] ;

int n; /*number of stacks entered by the user */

To divide the array into roughly equal segments

top[0] = boundary[0] = -1;

for (j= 1;j<n; j++)

top[j] = boundary[j] = (MEMORY_SIZE / n) * j;

boundary[n] = MEMORY_SIZE - 1;

Figure: Initial configuration for n stacks in memory [m].

In the figure, n is the number of stacks entered by the user, n < MAX_STACKS, and

m=MEMORY_SIZE. Stack i grow from boundary[i] + 1 to boundary [i + 1] before it is full.

A boundary for the last stack is needed, so set boundary [n] to MEMORY_SIZE-1.

DATA STRUCTURES AND APPLICATIONS 18CS32

SURESHA D and SATHISHA M S DEPT. of CSE, CANARA ENGINEERING COLLEGE, MANGALURU 34

Implementation of the add operation

void push(int i, element item)

{ /* add an item to the ith stack */

if (top[i] == boundary[i+l])

stackFull(i);

memory[++top[i]] = item;

}

Program: Add an item to the ith stack

Implementation of the delete operation

element pop(int i)

{ /* remove top element from the ith stack */

if (top[i] == boundary[i])

return stackEmpty(i);

return memory[top[i]--];

}

Program: Delete an item from the ith stack

The top[i] == boundary[i+1] condition in push implies only that a particular stack ran out of

memory, not that the entire memory is full. But still there may be a lot of unused space between

other stacks in array memory as shown in Figure.

Therefore, create an error recovery function called stackFull, which determines if there is any

free space in memory. If there is space available, it should shift the stacks so that space is

allocated to the full stack.

Method to design stackFull

DATA STRUCTURES AND APPLICATIONS 18CS32

SURESHA D and SATHISHA M S DEPT. of CSE, CANARA ENGINEERING COLLEGE, MANGALURU 35

• Determine the least, j, i < j < n, such that there is free space between stacks j and j+1. That

is, top[j] < boundary[j+l]. If there is a j, then move stacks i+l,i+2, .., j one position to the

right (treating memory[O] as leftmost and memory[MEMORY_SIZE - 1] as rightmost).

This creates a space between stacks i and i+1.

• If there is no j as in (1), then look to the left of stack i. Find the largest j such that 0 ≤ j≤ i

and there is space between stacks j and j+ 1 ie, top[j] < boundary[j+l]. If there is a j, then

move stacks j+l, j+2, ... , i one space to the left. This also creates space between stacks i and

i+1.

• If there is no j satisfying either condition (1) or condition (2), then all MEMORY_SIZE

spaces of memory are utilized and there is no free space. In this case stackFull terminates

with an error message.

DATA STRUCTURES AND APPLICATIONS 18CS32

SURESHA D and SATHISHA M S DEPT. of CSE, CANARA ENGINEERING COLLEGE, MANGALURU 36

Web Links

1. VTU DSA (18CS32)Stacks: Definition, Array Representation, Stacks using Dynamic

Arrays (M2 L1)

https://www.youtube.com/watch?v=W3-

ZUJG7wB0&list=PLVDfFatHsysQGtvuaDbTTkle69C0wHaK_&index=2

2. VTU DSA (18CS32) Stack Applications: Polish notation Infix to postfix

conversion(M2 L2)

https://www.youtube.com/watch?v=GPEQidLrgOE&list=PLVDfFatHsysQGtvuaDbT

Tkle69C0wHaK_&index=11

3. VTU DSA (18CS32) Stack Applications: Evaluation of postfix expression (M2 L3)

https://www.youtube.com/watch?v=mz9XEbAYzrY&list=PLVDfFatHsysQGtvuaDb

TTkle69C0wHaK_&index=12

4. VTU DSA (18CS32) Stack Applications: Recursion, Factorial (M2 L4.1)

https://www.youtube.com/watch?v=BdA4BEZE9Rs&list=PLVDfFatHsysQGtvuaDb

TTkle69C0wHaK_&index=13

5. VTU DSA (18CS32) Stack Applications: GCD, Fibonacci Sequence (M2 L4.2)

https://www.youtube.com/watch?v=Gvf2cjcrZKY&list=PLVDfFatHsysQGtvuaDbTT

kle69C0wHaK_&index=14

6. VTU DSA (18CS32) Recursion: Tower of Hanoi, Ackerman's function (M2 L5)

https://www.youtube.com/watch?v=i0akTu-

D9cI&list=PLVDfFatHsysQGtvuaDbTTkle69C0wHaK_&index=16

7. VTU DSA (18CS32) Queues: Definition, Array Representation, Queue Operations,

Circular Queues (M2 L6)

https://www.youtube.com/watch?v=vAKtmvkEDXQ&list=PLVDfFatHsysQGtvuaDb

TTkle69C0wHaK_&index=17

8. VTU DSA (18CS32) Circular queues, Circular queues using Dynamic arrays (M2L7.1)

https://www.youtube.com/watch?v=gfGt197U6do&list=PLVDfFatHsysQGtvuaDbTT

kle69C0wHaK_&index=17

9. VTU DSA (18CS32) Dequeues, Priority Queues, A Mazing Problem (M2L7.2.1)

https://www.youtube.com/watch?v=wIKd3y4kDqk&list=PLVDfFatHsysQGtvuaDbT

Tkle69C0wHaK_&index=18

10. VTU DSA (18CS32) Stack Applications: A Mazing Problem(M2L7.2.2)

https://www.youtube.com/watch?v=vOmU-

JbexU&list=PLVDfFatHsysQGtvuaDbTTkle69C0wHaK&index=19

11. VTU DSA (18CS32) Stack: Multiple Stacks and Queues (M2 L8)

https://www.youtube.com/watch?v=Wkb2NspsZxw&list=PLVDfFatHsysQGtvuaDb

TTkle69C0wHaK_&index=20

https://www.youtube.com/watch?v=W3-ZUJG7wB0&list=PLVDfFatHsysQGtvuaDbTTkle69C0wHaK_&index=2
https://www.youtube.com/watch?v=W3-ZUJG7wB0&list=PLVDfFatHsysQGtvuaDbTTkle69C0wHaK_&index=2
https://www.youtube.com/watch?v=GPEQidLrgOE&list=PLVDfFatHsysQGtvuaDbTTkle69C0wHaK_&index=11
https://www.youtube.com/watch?v=GPEQidLrgOE&list=PLVDfFatHsysQGtvuaDbTTkle69C0wHaK_&index=11
https://www.youtube.com/watch?v=mz9XEbAYzrY&list=PLVDfFatHsysQGtvuaDbTTkle69C0wHaK_&index=12
https://www.youtube.com/watch?v=mz9XEbAYzrY&list=PLVDfFatHsysQGtvuaDbTTkle69C0wHaK_&index=12
https://www.youtube.com/watch?v=BdA4BEZE9Rs&list=PLVDfFatHsysQGtvuaDbTTkle69C0wHaK_&index=13
https://www.youtube.com/watch?v=BdA4BEZE9Rs&list=PLVDfFatHsysQGtvuaDbTTkle69C0wHaK_&index=13
https://www.youtube.com/watch?v=Gvf2cjcrZKY&list=PLVDfFatHsysQGtvuaDbTTkle69C0wHaK_&index=14
https://www.youtube.com/watch?v=Gvf2cjcrZKY&list=PLVDfFatHsysQGtvuaDbTTkle69C0wHaK_&index=14
https://www.youtube.com/watch?v=i0akTu-D9cI&list=PLVDfFatHsysQGtvuaDbTTkle69C0wHaK_&index=16
https://www.youtube.com/watch?v=i0akTu-D9cI&list=PLVDfFatHsysQGtvuaDbTTkle69C0wHaK_&index=16
https://www.youtube.com/watch?v=vAKtmvkEDXQ&list=PLVDfFatHsysQGtvuaDbTTkle69C0wHaK_&index=17
https://www.youtube.com/watch?v=vAKtmvkEDXQ&list=PLVDfFatHsysQGtvuaDbTTkle69C0wHaK_&index=17
https://www.youtube.com/watch?v=gfGt197U6do&list=PLVDfFatHsysQGtvuaDbTTkle69C0wHaK_&index=17
https://www.youtube.com/watch?v=gfGt197U6do&list=PLVDfFatHsysQGtvuaDbTTkle69C0wHaK_&index=17
https://www.youtube.com/watch?v=wIKd3y4kDqk&list=PLVDfFatHsysQGtvuaDbTTkle69C0wHaK_&index=18
https://www.youtube.com/watch?v=wIKd3y4kDqk&list=PLVDfFatHsysQGtvuaDbTTkle69C0wHaK_&index=18
https://www.youtube.com/watch?v=vOmU-_JbexU&list=PLVDfFatHsysQGtvuaDbTTkle69C0wHaK_&index=19
https://www.youtube.com/watch?v=vOmU-_JbexU&list=PLVDfFatHsysQGtvuaDbTTkle69C0wHaK_&index=19
https://www.youtube.com/watch?v=Wkb2NspsZxw&list=PLVDfFatHsysQGtvuaDbTTkle69C0wHaK_&index=20
https://www.youtube.com/watch?v=Wkb2NspsZxw&list=PLVDfFatHsysQGtvuaDbTTkle69C0wHaK_&index=20

DATA STRUCTURES AND APPLICATIONS 18CS32

SURESHA D and SATHISHA M S DEPT. of CSE, CANARA ENGINEERING COLLEGE, MANGALURU 37

Question Bank

1. Define stack. Implement the operations of stack using arrays.

2. How stacks are represented using arrays?

3. Explain stacks operations using dynamic arrays

4. What is expression? Write the different ways of representing expressions

5. Assume A=1, B=2, C=3. Evaluate the following postfix expressions:

a. AB+C–BA+C$-

b. ABC+*CBA–+*

6. Apply suitable data structure to covert infix to postifix expression

a. A$B*C–D+E/F/(G+H)

b. A–B/(C*D$E)

c. ((A-(B+C))*D)$(E+F)

d. (a * b) +c/d

e. (((a / b)-c) + (d * e)) - (a * c).

7. State the advantages of using infix & postfix notations

8. Write a C function to convert infix to a postfix expression

9. Write a C function to evaluate a postfix expression.

10. Convert the infix expression a/b - c+ d * e – a * c into postfix expression. Write a

function to evaluate that postfix expression and trace that for given data a=6, b=3, c =

1, d = 2, e =4.

11. What is recursive function? Show that how factorial using for loop is different

from recursive function

12. With an example explain the GCD and Fibonacci sequence.

13. Discuss the Tower of Hanoi with example using recursive function.

14. Write a note on Ackermann function

15. Define Queue. Implement the operations of queue using arrays. Apply the same on

job scheduling.

16. Show how queues are represented using arrays?

17. Explain queues operations using dynamic arrays

DATA STRUCTURES AND APPLICATIONS 18CS32

SURESHA D and SATHISHA M S DEPT. of CSE, CANARA ENGINEERING COLLEGE, MANGALURU 38

18. For the given circular queue shown in Fig. write the values of front and rear in the

table after each specified operation is performed. Queue full empty conditions must

be considered. 0 - 7 indicate the array indices.

19. Give the disadvantage of ordinary queue and how it is solved in circular queue. Explain

with suitable example how you would implement circular queue using dynamically

allocated array

20. What is circular queue? Explain how it is differ from linear queue. Write a C program

for primitive operations of circular queue

21. What is the problem encountered with the circular queue? Explain how the dynamic

circular queue can solve the problem with example.

22. Write a note on dequeue.

23. Define priority queue. Explain in detail the representation of a Priority Queue with

example

24. Explain multiple stacks and queues.

25. Briefly explain the mazing problem with an initial maze algorithm.

DATA STRUCTURES AND APPLICATIONS 18CS32

SURESHA D and SATHISHA M S DEPT. of CSE, CANARA ENGINEERING COLLEGE, MANGALURU 39

References

1. Fundamentals of Data Structures in C - Ellis Horowitz and Sartaj Sahni, 2nd edition,

Universities Press,2014

2. Data Structures - Seymour Lipschutz, Schaum's Outlines, Revised 1st edition, McGraw

Hill, 2014

