
CANARA ENGINEERING COLLEGE
Benjanapadavu, Bantwal Taluk - 574219

Department of Computer Science & Engineering

VISION

To be recognized as a center of knowledge dissemination in Computer Science and Engineering

by imparting value-added education to transform budding minds into competent computer

professionals.

MISSION

M1. Provide a learning environment enriched with ethics that helps in enhancing problem

solving skills of students and, cater to the needs of the society and industry.

M2. Expose the students to cutting-edge technologies and state-of-the-art tools in the many

areas of Computer Science & Engineering.

M3. Create opportunities for all round development of students through co-curricular and

extra-curricular activities.

M4. Promote research, innovation and development activities among staff and students.

PROGRAMME EDUCATIONAL OBJECTIVES

PE01: Graduates will work productively as computer science engineers exhibiting ethical

qualities and leadership roles in multidisciplinary teams.

PEO2: Graduates will adapt to the changing technologies, tools and societal requirements.

PEO3: Graduates will design and deploy software that meets the needs of individuals and the

industries

PEO4: Graduates will take up higher education and/or be associated with the field so that they

can keep themselves abreast of Research & Development

PROGRAMME OUTCOMES

Engineering graduates in Computer Science and Engineering will be able to:

1. Engineering knowledge: Apply the knowledge of mathematics, science, engineering

fundamentals and an engineering specialization to the solution of complex engineering

problems.

2. Problem analysis: Identify, formulate, review research literature and analyze complex

engineering problems reaching substantiated conclusions using first principles of

mathematics, natural sciences and engineering sciences.

3. Design/development of solutions: Design solutions for complex engineering problems

and design system components or processes that meet the specific needs with appropriate

consideration for the public health and safety, and the cultural, societal and

environmental considerations.

4. Conduct investigations of complex problems: Use research-based knowledge and

research methods, including design of experiments, analysis and interpretation of data

and synthesis of the information to provide valid conclusions.

5. Modern tool usage: Select/Create and apply appropriate techniques, resources and

modern engineering and IT tools, including prediction and modeling to complex

engineering activities, taking comprehensive cognizance of their limitations.

6. The engineer and society: Apply reasoning informed by the contextual knowledge to

assess societal, health, safety, legal and cultural issues and the consequent

responsibilities relevant to the professional engineering practice.

7. Environment and Sustainability: Understand the impact of the professional

engineering solutions in societal and environmental contexts and demonstrate the

knowledge of and need for sustainable development.

8. Ethics: Apply ethical principles and commit to professional ethics and responsibilities

and norms of the relevant scientific and/or engineering practices.

9. Individual and team work: Function effectively as an individual and as a member or

leader in diverse teams and in multidisciplinary settings.

10. Communication: Communicate effectively on complex engineering activities with the

engineering community and with the society-at-large, such as being able to comprehend

and write effective reports and design documentation, make effective presentations and

give and receive clear instructions.

11. Project management and finance: Demonstrate knowledge and understanding of the

ber

and leader in a team to manage projects and in multidisciplinary environments.

12. Life-long learning: Recognize the need for and above have the preparation and ability

to engage in independent and life-long learning in the broadcast context of technological

changes.

PROGRAMME SPECIFIC OUTCOMES

1. Computer System Components: Apply the principles of computer system

architecture and software to design, develop and deploy computer subsystem.

2. Data Driven and Internet Applications: Apply the knowledge of data storage,

analytics and network architecture in designing Internet based applications.

DATA STRUCTURES AND APPLICATIONS

(Effective from the academic year 2018 -2019)

SEMESTER III

Course Code 18CS32 CIE Marks 40

Number of Contact Hours/Week 3:2:0 SEE Marks 60

Total Number of Contact Hours 50 Exam Hours 03

CREDITS 4

Course Learning Objectives: This course (18CS32) will enable students to:

 Explain fundamentals of data structures and their applications essential for programming/problem
solving.

 Illustrate linear representation of data structures: Stack, Queues, Lists, Trees and Graphs.

 Demonstrate sorting and searching algorithms.

 Find suitable data structure during application development/Problem Solving.

Module 1 Contact
Hours

Introduction: Data Structures, Classifications (Primitive & Non-Primitive), Data structure
Operations, Review of Arrays, Structures, Self-Referential Structures, and Unions. Pointers
and Dynamic Memory Allocation Functions. Representation of Linear Arrays in Memory,
Dynamically allocated arrays.

Array Operations: Traversing, inserting, deleting, searching, and sorting. Multidimensional
Arrays, Polynomials and Sparse Matrices.

Strings: Basic Terminology, Storing, Operations and Pattern Matching algorithms.
Programming Examples.

Textbook 1: Chapter 1: 1.2, Chapter 2: 2.2 - 2.7 Text Textbook 2: Chapter 1: 1.1 - 1.4,

Chapter 3: 3.1 - 3.3, 3.5, 3.7, Chapter 4: 4.1 - 4.9, 4.14 Reference 3: Chapter 1: 1.4 RBT:
L1, L2, L3

10

Module 2

Stacks: Definition, Stack Operations, Array Representation of Stacks, Stacks using Dynamic
Arrays, Stack Applications: Polish notation, Infix to postfix conversion, evaluation of postfix
expression.

Recursion - Factorial, GCD, Fibonacci Sequence, Tower of Hanoi, Ackerman's function.
Queues: Definition, Array Representation, Queue Operations, Circular Queues, Circular
queues using Dynamic arrays, Dequeues, Priority Queues, A Mazing Problem. Multiple
Stacks and Queues. Programming Examples.

Textbook 1: Chapter 3: 3.1 -3.7 Textbook 2: Chapter 6: 6.1 -6.3, 6.5, 6.7-6.10, 6.12, 6.13
RBT: L1, L2, L3

10

Module 3

Linked Lists: Definition, Representation of linked lists in Memory, Memory allocation;
Garbage Collection. Linked list operations: Traversing, Searching, Insertion, and Deletion.
Doubly Linked lists, Circular linked lists, and header linked lists. Linked Stacks and Queues.
Applications of Linked lists Polynomials, Sparse matrix representation. Programming
Examples

Textbook 1: Chapter 4: 4.1 4.6, 4.8, Textbook 2: Chapter 5: 5.1 5.10,
RBT: L1, L2, L3

10

Module 4

Trees: Terminology, Binary Trees, Properties of Binary trees, Array and linked
Representation of Binary Trees, Binary Tree Traversals - Inorder, postorder, preorder;
Additional Binary tree operations. Threaded binary trees, Binary Search Trees Definition,
Insertion, Deletion, Traversal, Searching, Application of Trees-Evaluation of Expression,

Programming Examples

Textbook 1: Chapter 5: 5.1 5.5, 5.7; Textbook 2: Chapter 7: 7.1 7.9
RBT: L1, L2, L3

10

Module 5

Graphs: Definitions, Terminologies, Matrix and Adjacency List Representation of Graphs,
Elementary Graph operations, Traversal methods: Breadth First Search and Depth First
Search.

Sorting and Searching: Insertion Sort, Radix sort, Address Calculation Sort.

Hashing: Hash Table organizations, Hashing Functions, Static and Dynamic Hashing.

Files and Their Organization: Data Hierarchy, File Attributes, Text Files and Binary Files,
Basic File Operations, File Organizations and Indexing

Textbook 1: Chapter 6: 6.1 6.2, Chapter 7:7.2, Chapter 8: 8.1-8.3

Textbook 2: Chapter 8: 8.1 8.7, Chapter 9: 9.1-9.3, 9.7, 9.9

Reference 2: Chapter 16: 16.1 - 16.7
RBT: L1, L2, L3

10

Course Outcomes: The student will be able to:

 Use different types of data structures, operations and algorithms

 Apply searching and sorting operations on files

 Use stack, Queue, Lists, Trees and Graphs in problem solving

 Implement all data structures in a high-level language for problem solving.

Question Paper Pattern:

 The question paper will have ten questions.

 Each full Question consisting of 20 marks

 There will be 2 full questions (with a maximum of four sub questions) from each module.

 Each full question will have sub questions covering all the topics under a module.

 The students will have to answer 5 full questions, selecting one full question from each module.

Textbooks:

1. Ellis Horowitz and Sartaj Sahni, Fundamentals of Data Structures in C, 2nd Ed, Universities
Press, 2014.

2. Seymour Lipschutz, Data Structures Schaum's Outlines, Revised 1st Ed, McGraw Hill, 2014.

Reference Books:

1. Gilberg & Forouzan, Data Structures: A Pseudo-code approach with C, 2nd Ed, Cengage
Learning,2014.

2. Reema Thareja, Data Structures using C, 3rd Ed, Oxford press, 2012.

3. Jean-Paul Tremblay & Paul G. Sorenson, An Introduction to Data Structures with Applications,
2nd Ed, McGraw Hill, 2013

4. A M Tenenbaum, Data Structures using C, PHI, 1989

5. Robert Kruse, Data Structures and Program Design in C, 2nd Ed, PHI, 1996.

COURSE OBJECTIVES:

This course will enable students to

1
Explain fundamentals of data structures and their applications essential for

programming/problem solving.

2 Analyze Linear Data Structures: Stack, Queues, Lists

3 Analyze Non-Linear Data Structures: Trees, Graphs

4 Analyze and Evaluate the sorting & searching algorithms

5 Assess appropriate data structure during program development/Problem Solving

COURSE OUTCOMES (COs):

SL.
NO

DESCRIPTION

The students are able to:

CO:1 Explain various types of data structures, sorting and searching operations on arrays.

CO:2
Develop the programs on operations like searching, insertion, deletion, traversing
mechanism on stack and queues.

CO:3 Apply the basic knowledge of linked list to solve real world problems.

CO:4
Develop the programs on operations like searching, insertion, deletion, traversing
mechanism on trees.

CO:5
Explain the basic graph algorithms and their analyses. Employ graphs and Sorting
and searching operations, to model engineering problems, when appropriate

MODULE 3: LINKED LIST

 DEFINITION

A linked list is a dynamic data structure where each element (called a node) is made up of two

items - the data and a reference (or pointer) which points to the next node. A linked list is a

collection of nodes where each node is connected to the next node through a pointer.

 In the above figure each node is pictured with two parts.

➢ The left part represents the information part of the node, which may contain an entire record

of data items.

➢ The right part represents the link field of the node

➢ An arrow drawn from a node to the next node in the list.

➢ The pointer of the last node contains a special value, called the NULL.

A pointer variable called first which contains the address of the first node.

A special case is the list that has no nodes; such a list is called the null list or empty list and is

denoted by the null pointer in the variable first.

REP RESENTATION OF LINKED LISTS IN MEMORY

 listPointer first = NULL;

To create a New Node

MALLOC (first, sizeof(*first));

To place the data into Node

strcpy(first→ data,”BAT”);

first→ link = NULL

LINKED LIST OPERATIONS

1. Creating two node lists:

2. Insertion into front of list

3. Deletion from the list:

4. Traversing a linked List

Additional List operations

1. Inverting (Reversing) Singly linked List

2. Concatenating singly Linked list

3. Searching:

There are two searching algorithms for finding location LOC of the node where

ITEM first appears in LIST.

Let LIST be a linked list in memory. Suppose a specific ITEM of information is given.

If ITEM is actually a key value and searching through a file for the record containing

ITEM, then ITEM can appear only once in LIST.

LIST Is Unsorted

Suppose the data in LIST are not sorted. Then search for ITEM in LIST by traversing

through the list using a pointer variable PTR and comparing ITEM with the contents

PTR→INFO o f each node, one by one, of LIST. Before updating the pointer PTR by

PTR =PTR→LINK

It requires two tests.

First check whether we have reached the end of the list,

i.e., PTR = = NULL

If not, then check to see whether

PTR→INFO = = ITEM

The complexity of this algorithm for the worst-case running time is proportional to the

number n of elements in LIST, and the average-case running time is approximately

proportional to n/2 (with the condition that ITEM appears once in LIST but with equal

probability in any node of LIST).

LIST i s Sorted

Suppose the data in LIST are sorted. Search for ITEM in LIST by traversing the list using

a pointer variable PTR and comparing ITEM with the contents PTR→INFO o f each node,

one by one, of LIST. Now, searching can stop once ITEM exceeds PTR→INFO.

The complexity of this algorithm for the worst-case running time is proportional to the

number n of elements in LIST, and the average-case running time is approximately

proportional to n/2

Deleting the Node wi th a Given ITEM of Information

• Consider a given an ITEM of information and wants to delete from the LIST the

first node N which contains ITEM. Then it is needed to know the location of the

node preceding N. Accordingly, first finds the location LOC of the node N

containing ITEM and the location LOCP of the node preceding node N.

• If N is the first node, then set LOCP = NULL, and if ITEM does not appear in

LIST, then set LOC = NULL.

• Traverse the list, using a pointer variable PTR and comparing ITEM with

PTR→INFO at each node. While traversing, keep track of the location of the

preceding node by using a pointer variable SAVE. Thus, S A V E a n d P T R a r e

u p d a t e d b y t h e assignments SAVE: =PTR and PTR: = PTR→LINK

• The traversing continues as long as PTR→INFO ≠ ITEM, o r in other words,

t h e traversing stops as soon as ITEM = PTR→INFO. Then PTR contains the

location LOC of node N and SAVE contains the location LOCP of the node

preceding N

LINKED STACKS

The above figure shows stacks and queues using linked list. Nodes can easily add or delete a node

from the top of the stack. Nodes can easily add a node to the rear of the queue and add or delete a

node at the front

Function push creates a new node, temp, and places item in the data field and top in the link

field. The variable top is then changed to point to temp. A typical function call to add an

element to the ith stack would be push (i, item).

Function pop returns the top element and changes top to point to the address contained in its

link field. The removed node is then returned to system memory. A typical function call to

delete an element from the ith stack would be item = pop (i);

LINKED QUEUES

Function addq is more complex than push because we must check for an empty queue. If the

queue is empty, then change front to point to the new node; otherwise change rear's link field

to point to the new node. In either case, we then change rear to point to the new node.

Function deleteq is similar to pop since nodes are removing that is currently at the start of the

list. Typical function calls would be addq (i, item); and item = deleteq (i);

APPLICATIONS OF LINKED LISTS

POLYNOMIALS

Representation of the polynomial:

Adding Polynomials

To add two polynomials, examine their terms starting at the nodes pointed to by a and b.

• If the exponents of the two terms are equal, then add the two coefficients and cre

ate a new term for the result, and also move the pointers to the next nodes in a and

b.

• If the exponent of the current term in a is less than the exponent of the current

term in b, then create a duplicate term of b, attach this term to the result, called

c, and advance the pointer to the next term in b.

• If the exponent of the current term in b is less than the exponent of the current

term in a, then create a duplicate term of a, attach this term to the result, called

c, and advance the pointer to the next term in a

Below figure illustrates this process for the polynomial s addition.

Erase polynomials

Circular List representation of Polynomials with Header Nodes

Operations on circular singly linked List

SPARSE MATRIX REPRESENTATON

A linked list representation for sparse matrices.

In data representation, each column of a sparse matrix is represented as a circularly

linked list with a header node. A similar representation is used for each row of a sparse

matrix.

Each node has a tag field, which is used to distinguish between header nodes and entry

nodes.

Header Node:

• Each header node has three fields: down, right, and next as shown in figure (a).

• The down field is used to link into a column list and the right field to link into a

row list.

• The next field links the header nodes together.

• The header node for row i is also the header node for column i, and the total

number of header nodes is max {number of rows, number of columns}.

Element node:

• Each element node has five fields in addition in addition to the tag field: row, col,

down, right, value as shown in figure (b).

• The down field is used to link to the next nonzero term in the same column and the

right field to link to the next nonzero term in the same row. Thus, if aij ≠ 0, there

is a node with tag field = entry, value = aij, row = i, and col = j as shown in figure

(c).

• We link this node into the circular linked lists for row i and column j. Hence,

it is simultaneously linked into two different lists.

Consider the sparse matrix, as shown in below figure (2).

Figure (3) shows the linked representation of this matrix. Although we have not shown

the value of the tag fields, we can easily determine these values from the node structure.

For each nonzero term of a, have one entry node that is in exactly one row list and one
column

list. The header nodes are marked HO-H3. As the figure shows, we use the right

field of the header node list header

To represent a numRows x numCols matrix with numTerms nonzero terms, then we need max

{numRows, numCols} + numTerms + 1 node. While each node may require several words of

memory, the total storage will be less than numRows x numCols when numTerms is

sufficiently small.

There are two different types of nodes in representation, so unions are used to create the

appropriate data structure. The C declarations are as follows:

DOUBLY LINKED LIST

1. The difficulties with single linked lists are that, it is possible to traversal only in one

direction, ie., direction of the links.

2. The only way to find the node that precedes p is to start at the beginning of the list. The

same problem arises when one wishes to delete an arbitrary node from a singly linked list.

Hence the solution is to use doubly linked list

Doubly linked list: It is a linear collection of data elements, called nodes, where each node N is

divided into three parts:

1. An information field INFO which contains the data of N

2. A pointer field LLINK (FORW) which contains the location of the next node in the list

3. A pointer field RLINK (BACK) which contains the location of the preceding node in

the list

Insertion into a doubly linked list

Insertion into a doubly linked list is fairly easy. Assume there are two nodes, node and new node,

node may be either a header node or an interior node in a list. The function dinsert performs the

insertion operation in constant time.

Deletion from a doubly linked list

Deletion from a doubly linked list is equally easy. The function ddelete deletes the node deleted

from the list pointed to by node.

To accomplish this deletion, we only need to change the link fields of the nodes that precede

(deleted→llink→rlink) and follow (deleted→rlink→llink) the node we want to delete.

Garbage Collection

• Suppose some memory space becomes reusable because a node is deleted from a

list or an entire list is deleted from a program. So, space is needed to be available

for future use.

• One way to bring this is to immediately reinsert the space into the free

 storage list.

However, th is method may be too t ime -consuming for t h e operating

system of a computer, which may choose an alternative method, as follows.

The operating system of a computer may periodically collect all the deleted space onto

the free storage list. Any technique which does this collection is called garbage collection.

Garbage collection takes place in two steps.

1. First the computer runs through all lists, tagging those cells which are currently

in use

2. And then the computer runs through the memory, collecting all untagged space onto

the free-storage list.

The garbage collection may take place when there is only some minimum amount of

space or no space at all left in the free-storage list, or when the CPU is idle and has time

to do the collection.

Overflow

• Sometimes new data are to be inserted into a data structure but there is no available

space, i.e., the free-storage list is empty. This situation is usually called overflow.

• The programmer may handle overflow by printing the message OVERFLOW. In such

a case, the programmer may then modify the program by adding space to the underlying

arrays.

• Overflow will occur with linked lists when AVAIL = NULL and there is an

 insertion.

Underflow

• The term underflow refers to the situation where one wants to delete data from

a data structure that is empty.

• The programmer may handle underflow by printing the message UNDERFLOW.

 • The underflow will occur with linked lists when START = NULL and there is a

 deletion

QUESTION BANK

1. What is linked list? Explain the different types of linked list with examples.

2. Give a node structure to create a linked list of integers and write a C function to perform

the following.

i. Create a three-node list with data 10, 20 and 30

ii. Inert a node with data value 15 in between the nodes having data values 10 and 20

iii. Delete the node which is followed by a node whose data value is 20

iv. Display the resulting singly linked list.

3. With node structure show how would you store the polynomials in linked lists? Write C

function for adding two polynomials represented as circular lists.

4. Write a note on:

i. Linked representation of sparse matrix

ii. Doubly linked list.

5. Write a function to insert a node at front and rear end in a circular linked list. Write down

sequence of steps to be followed.

6. For the given sparse matrix write the diagrammatic linked list representation

7. Define linked list. Write a C program to implement the insert and delete operation on a

queue using linked list.

8. Write a C-function to add two polynomials using linked list representation. Explain with

suitable example.

9. Explain how a chain can be used to implement a queue. Write the functions to insert and

delete elements from such a queue.

10. Describe the doubly linked lists with advantages and disadvantages. Write a C function to

delete a node from a doubly linked list, ptr is the pointer which points to the node to be

deleted. Assume that there are nodes on either side of the node to be deleted.

11. For the given sparse matrix, give the diagrammatic linked representation.

12. Write a C program to perform the following operations on doubly linked list:

i. Insert a node

ii. Delete a node.

13. Write a C function to insert a node at front and delete a node from the rear end in a circular

linked list.

14. Describe the doubly linked lists with advantages and disadvantages. Write a C function to

delete a node from a circular doubly linked list with header node.

15. Write a C function for the concatenation of linked lists.

16. Write a C function to add two-polynomials represented as circular list with header node.

17. Write a C function to perform the following

i. Reversing a singly linked list

ii. Concatenating singly linked list.

iii. Finding the length of the circular linked list.

iv. To search an element in the singly linked list

18. Write a node structure of linked stack. Write a function to perform push and pop operations

on linked stack.

19. . List out the differences between doubly linked list over singly linked list. Write a C

functions to perform the following

i. Inserting a node into a doubly linked circular list

ii. Deletion from a doubly linked circular list.

20. Write a function for singly linked lists with integer data, to search an element in the list

that is unsorted and a list that is sorted.

21. Given 2 singly linked lists. LIST-1 and LIST-2. Write an algorithm to form a new list

LIST-3 using concatenation of the lists LIST-1 and LIST-2.

22. Write a note on header linked list. Explain the widely used header lists with diagrams.

23. Illustrate with examples how to insert a node at the beginning, INSERT a node at

intermediate position, DELETE a node with a given value

24. List out any 2 differences between doubly linked lists and singly linked list, Illustrate with

example the following operations on a doubly linked list:

i. Inserting a node at the beginning.

ii. Inserting at the intermediate position.

iii. Deletion of a node with a given value.

Video Links

1. https://www.youtube.com/watch?v=mtmM79oMtec&list=PLVDfFatHsysQGtvu

aDbTTkle69C0wHaK_&index=21&t=11s

2. https://www.youtube.com/watch?v=pAGwIoAP_X8&list=PLVDfFatHsysQGtvu

aDbTTkle69C0wHaK_&index=22&t=7s

3. https://www.youtube.com/watch?v=3Sz4Aq23OO8&list=PLVDfFatHsysQGtvua

DbTTkle69C0wHaK_&index=23&t=210s

4. https://www.youtube.com/watch?v=qAoVmzy_jNw&list=PLVDfFatHsysQGtvu

aDbTTkle69C0wHaK_&index=24

5. https://www.youtube.com/watch?v=Yj_vp6EMkOE&list=PLVDfFatHsysQGtvu

aDbTTkle69C0wHaK_&index=25&t=50s

6. https://www.youtube.com/watch?v=cQA9geQEo90&list=PLVDfFatHsysQGtvua

DbTTkle69C0wHaK_&index=26

7. https://www.youtube.com/watch?v=bvoobiimjGk&list=PLVDfFatHsysQGtvuaD

bTTkle69C0wHaK_&index=27&t=18s

https://www.youtube.com/watch?v=mtmM79oMtec&list=PLVDfFatHsysQGtvuaDbTTkle69C0wHaK_&index=21&t=11s
https://www.youtube.com/watch?v=mtmM79oMtec&list=PLVDfFatHsysQGtvuaDbTTkle69C0wHaK_&index=21&t=11s
https://www.youtube.com/watch?v=pAGwIoAP_X8&list=PLVDfFatHsysQGtvuaDbTTkle69C0wHaK_&index=22&t=7s
https://www.youtube.com/watch?v=pAGwIoAP_X8&list=PLVDfFatHsysQGtvuaDbTTkle69C0wHaK_&index=22&t=7s
https://www.youtube.com/watch?v=3Sz4Aq23OO8&list=PLVDfFatHsysQGtvuaDbTTkle69C0wHaK_&index=23&t=210s
https://www.youtube.com/watch?v=3Sz4Aq23OO8&list=PLVDfFatHsysQGtvuaDbTTkle69C0wHaK_&index=23&t=210s
https://www.youtube.com/watch?v=qAoVmzy_jNw&list=PLVDfFatHsysQGtvuaDbTTkle69C0wHaK_&index=24
https://www.youtube.com/watch?v=qAoVmzy_jNw&list=PLVDfFatHsysQGtvuaDbTTkle69C0wHaK_&index=24
https://www.youtube.com/watch?v=Yj_vp6EMkOE&list=PLVDfFatHsysQGtvuaDbTTkle69C0wHaK_&index=25&t=50s
https://www.youtube.com/watch?v=Yj_vp6EMkOE&list=PLVDfFatHsysQGtvuaDbTTkle69C0wHaK_&index=25&t=50s
https://www.youtube.com/watch?v=cQA9geQEo90&list=PLVDfFatHsysQGtvuaDbTTkle69C0wHaK_&index=26
https://www.youtube.com/watch?v=cQA9geQEo90&list=PLVDfFatHsysQGtvuaDbTTkle69C0wHaK_&index=26

