UNIT 8: Verification and validation modeling

One of the most important and difficult tasks facing a model developer isthe
Verification and validation of the simulation model.

It is the job of the model developer to work closely with the end users
Throughout the period (devel opment and validation to reduce this skepticism
And to increase the credibility.

The goa of the validation process is twofold:

1. To produce a model that represents true system behavior closely enough for the
model to be used as a substitute for the actual system for the purpose of experimenting
with system.

2: To increase an acceptable, level the credibility of the model ,so that the model will be

used by managers and other decision makers. |

The verification and validation process consists of the following components:-

1:Verification is concerned with building the model right. It is utilized in comparison of
the conceptual model to the computer representation that implements that conception.
It asks the questions: Is the model implemented correctly in the computer? Are the

input parameters and logical structure of the model correctly represented?

2: Validation is concerned with building the right model. It is utilized to determine that
a model is an accurate representation of the rea system. It is usualy achieved
through the calibration of the model
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7.1 Modél Building, Verification, and Validation

The first step in model building consists of observing the real system and the interactions
among its various components and collecting data on its behavior. Operators, technicians ,repair
and maintenance personnel, engineers, supervisors, and managers under certain aspects of the system
which may be unfamiliar to others. As model development proceeds, new questions may arise, and the
model developerswill return, to this step of learning true system structure and behavior.

The second step in model building is the construction of a conceptual model — a collection of
assumptions on the components and the structure of the system, plus hypotheses on the values of
model input parameters, illustrated by the following figure.

The third step is the trandation of the operationa model into a computer recognizable form- the

computerized model

- Real system

Cahbration

and Conceptual
validation validation

Conceptual mode)

1. Assumplions on system componenis

. Structural assumptions, which define
the interactions between system
components

. Input parameters and data assumptions

Muodel
verification

Y

\_ Operational model
(Computerized
representation)

Figure 1 Model building, verification, and validation
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7.2 Verification of Smulation Models

The purpose of model verification is to assure that the conceptual model is reflected
accurately in the computerized representation.
The conceptua model quite often involves some degree of abstraction about system operations,

or some amount of simplification of actual operations.

Many common-sense suggestions can be given for use in the verification process:-

Have the computerized representation checked by someone other than its developer.
Make a flow diagram whichincludes each logically possible action a system can take when
an event occurs, and follow the model logic for each afor each action for each event type.
Closely examine the model output for reasonableness under a variety of settings of Input
parameters.
Have the computerized representation print the input parameters at the end of the
Simulation to be sure that these parameter values have not been changed inadvertently.
Make the computerized representation of self-documenting as possible.
If the computerized representation is animated, verify that what is seen in the
animation imitates the actual system.
The interactive run controller (IRC) or debugger is an essentiad component of Successful
simulation model building. Even the best of simulation analysts makes mistakes or commits
logical errors when building a model.
ThelRC assistsin finding and correcting thoseerrors in the follow ways:
(a) The simulation can be monitored as it progresses.
(b) Attention can be focused on a particular line of logic or multiple lines of logic
that constitute a procedure or a particular entity.
(c) Values of sdected model components can be observed. When the simulation has
paused, the current value or status of variables, atributes, queues, resources,

counters, etc., can be observed

(d) The simulation can be temporarily suspended, or paused, not only to view

information but also to reassign values or redirect entities.

Graphical interfaces are recommended for accomplishing verification & validation
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7.3 Calibration and Validation of Models (As an aid in the validation process or

Naylor finger approches):
Verification and validation athough are conceptually distinct, usualy are conducted
Simultaneously by the modeler.
Validation isthe overall process of comparing the model and its behavior to the real
System and its behavior.
Cdlibrationis the iterative process of comparing the model tothe real system,
making adjustments to the model, comparing again and so on.
The following figure 7.2 shows the relationship of the model calibration to the overall
validation process.
The comparison of the model to reality is carried out by variety of test Test are subjective
and objective.
Subjective test usualy involve people, who are knowledgeable about one
or more aspects of the system, making judgments about the model and its output.
Objective tests aways require data on the system's behavior plus the
corresponding data produced by the model.

Compare model " Initial
to reality model
Revise
Y
Compare revised 5 fFirst revision
maode] to reality \. of model
Revise

Y

Compare second 7 gacand revision
revision to reality . of model
5

Revise

r
Figure 2 lterative process of calibration a model
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Asan aid in the validation process, Naylor finger:

1
2.
3.

Build amodel that has high face validity.
Validate model assumption.
Compare the model input-output transformation to cooresponding input-output

transformation for the real system.

7.3.1 FACE VALIDITY

The first goal of the simulation modeler is to construct a model that appears reasonable
onits face to model users and others who are knowledgeable about the real system
being simulated.

The users of a model should be involved in model construction from its
conceptualization to its implementation to ensure that a high degree of realism is built
into the model through reasonable assumptions regarding system structure, and
reliable data

Another advantage of user involvement is the increase inthe models perceived
validity or credibility without which manager will not be willing to trust simulation
results as the basis for decision making.

Sensitivity analysis can also be used to check model's face validity.

The model user is asked if the model behaves in the expected way when one or more
input variablesis changed.

Based on experience and observations on the rea system the model user and model
builder would probably have some notion at least of the direction of change in model
output when an input variable isincreased or decreased.

The model builder must attempt to choose the most critical input variables for

testing if it istoo expensive or time consuming to: vary al input variables

7.3.2 Validation of Model Assumptions

Model assumptions fall into two general classes: structural assumptions and

data assumptions.

Structural assumptions involve questions of how the system operates and usually involve

simplification and abstractions of redlity.
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For example, consider the customer queuing and service facility in a bank. Customers may
form one line, or there may be an individual line for each teller. If there are many lines,
customers may be served strictly on a first-come, first-served basis, or some customers may
changelinesif oneis moving faster.

The number of tellers may be fixed or variable. These structural assumptions should be
verified by actual observation during appropriate time periods together with discussions
with managers and tellers regarding bank policies and actual implementation of these
policies.

Data assumptions should be based on the collection of reliable data and correct statistical
analysis of the data.data were collected on:

1. Inter arrival times of customers during several 2-hour periods of peak loading
("rush-hour" traffic)

2. Inter arrival times during a slack period

3. Service times for commercia accounts

4. Service times for personal accounts

Validation is not an either/or proposition—no model is ever totally representative of
the system under study. In addition, each revision of the model, asin the Figure above
involves some cost, time, and effort.
The procedure for analyzing input data consist of three steps:-
1: Identifying the appropriate probability distribution.
2: Estimating the parameters of the hypothesized distribution .
3: Validating the assumed statistical model by goodness — of — fit test such as the chi
square test, KS test and by graphical methods

10.3.3 Validating I nput-Output Transfor mation

In this phase of validation process the model is viewed as input —output transformation.
That is, the model accepts the values of input parameters and transforms these inputs into
output measure of performance. It is this correspondence that is being validated.

Instead of validating the model input-output transformation by predicting the future ,the
modeler may use past historical data which has been served for validation purposes that
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is, if one set has been usedto develop calibrate the model, its recommended that a
separate data test be used as final validation test.

Thus accurate “ prediction of the past” may replace prediction of the future for purpose of
validating the future.

A necessary condition for input-output transformation is that some version of the system

under study exists so that the system data under at least one set of input condition can be
collected to compare to model prediction.

If the system isin planning stage and no system operating data can be collected, complete
input-output validation is not possible.

Validation increases modeler’s confidence that the model of existing system is accurate.
Changes in the computerized representation of the system, ranging from relatively minor

to relatively major include::

1: Minor changes of single numerical parameters such as speed of the machine, arrival
rate of the customer etc.

2: Minor changes of the form of a statistical distribution such as distribution of service
time or atimeto failure of amachine.

3: Mgor changes inthe logical structure of a subsystem such as change in queue
discipline for waiting-line model, or a change in the scheduling rule for a job shop
model.

4: Major changes involving a different design for the new system such as computerized

inventory control system replacing a non computerized system .

If the change to the computerized representation of the system is minor such asin items one
or two these change can be carefully verified and output from new model can be accepted

with considerable confidence.
7.3.4: Input-Output Validation: Using Historical Input Data

When using artificially generated data as input data the modeler expects the model produce
event patterns that are compatible with, but not identical to, the event patterns that
occurred in the real system during the period of data collection.

Thus, in the bank model, artificial input data { X\n, X2n, n=1,2,, .} for inter arrival and service
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7.3.5:

times were generated and replicates of the output data Y 2 were compared to what was observed
inthereal system

An alternative to generating input data is to use the actual historical record, {An, Sn, n=
1,2,..}, todrive simulation model and then to compare model output to system data.
Toimplement this technique for the bank model, the data Ai, A2,..., S1 S2 would have to be
entered into the model into arrays, or stored on afile to be read as the need arose.

To conduct a validation test using historical input data, it is important that all input data
(An, Sn,...) and dl the system response data, such as average delay(Z2), be collected during
the same time period.

Otherwise, comparison of model responses to system responses, such as the comparison of
average delay in the model (Y 2) to that in the system (Z2), could be misleading.

responses (Y2 and 22) depend on the inputs (An and Sn) as well as on the structure of the
system, or model.

Implementation of this technique could be difficult for a large system because of the need for
simultaneous data collection of all input variables and those response variables of primary
interest.

I nput-Output Validation: Usinga Turing Test

In addition to statistical tests, or when no statistical test is readily applicable persons
knowledgeable about system behavior can be used to compare model output to system
output.

For example, suppose that five reports of system performance over five different days are
prepared, and simulation output are used to produce five "fake" reports. The 10 reports
should all be inexactly inthe same format and should contain information of the type that
manager and engineer have previously seen on the system.

The ten reports are randomly shuffled and givento the engineers, whois asked to decide
which report are fake and which are real.

If engineer identifies substantial number of fake reports the model builder questions the engineer
and uses the information gained to improve the model.

If the engineer cannot distinguish between fake and real reports with any consistency, the

modeler will conclude that this test provides no evidence of model inadequacy .
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Thistype of validation test is called as TURING TEST.

8.4 Optimization via simulation:

Optimization via simulation to refer to the problem of maximizing or minimizing the expected

performance of a discrete event, stochastic system that is represented by a computer

simulation model.

Optimization usually deals with problems with certainty, but in stochastic discrete-event

simulation the result of any simulation run is a random variable

let x1,x2,..xm be the m controllable design variable and Y(x1,x2,..xm)be the observed

simulation output performance on one run:
To optimize Y(x1,x2,..xm) with respect to x1,x2,..xm is to maximize or minimize the

mathematical expectation of performance. E[Y(x1,x2,..xm)]

® Optimal for deterministic counterpart. The idea here is 1o use an algorithm that would find the
optimal solution if the performance of each design could be evaluared with certainiv. An example
might be applying a standard nonlinear programming algorithm to the simulation optimization prob-
lem. It is typically up to the analyst 1o make sure that enovgh simulation effon is expended (replica-
tions or run length) to insure that such an algorithm is not misled by sampling variability. Direct
application of an algorithm that assumes deterministic evaluation to a stochastic simulation is not
recommended.

® Robust heuristics. Many heuristics have been developed for deterministic optimization problems that
do not guarantee finding the optimal solution, but nevertheless been shown to be very effective on dif-
ficult, practical problems. Some of these heuristics use randomness as part of their search strategy, so
one might argue that they are less sensitive to sampling variability than other types of algorithms,
Nevertheless, it 1s still important to make sure that enough simulation effort is expended (replications
or run length) to insure that such an algorithm s not misled by sampling variability.

® GGuaraniee a prespecified probability of correct selection. The Two-Stage Bonferroni Procedure in
Section 12.2.2 is an example of this approach, which allows the analyst to specify the desired chance
of being right. Such algorithms typically require either that every possible design be simulated or that
a strong functional relationship among the designs (such as a metamodel) apply, Other algorithms can
he found in Goldsman and Nelson [ 1998].

#® Guarantee asymptotic convergence. There are many algorithms that guarantee convergence 1o the
global optimal solution as the simulation effort (number of replications, length of replications)
becomes infinite. These guarantees are useful because they indicate that the algorithm tends to get 1o
where the analyst wants it to go. However, convergence can be slow, and there is often no guarantee
as to how good the reported solution is when the algorithm is terminated in finite time (as it must
be in practice). See Andradowir [1998] for specific algorithms that apply to discrete- or continuous-
variable problems.
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OutPut analysis of steady state simulation(unit 7 vvimp 10m):

Output Analysis for Steady-State Simulations |

» Consider a single run of a simulation model to estimate
a steadystate or long-run characteristics of the system.

» The single run produces observations Yi, Yo,...
(generally the samples of an autocorrelated time series).

» Performance measure:

. b .
= lim — E Y: for discrete measure
n—oa A =
. 1 e ;
= lim — Y(t)dt, for continuous measure
Tg—eoo TE J0

independent of initial conditions, both with probability 1

» The sample size is a design choice, with several
considerations in mind:

1.Initialization Bias.
2.Error Estimation
3.Replication mathods.
4.Sample size.

5.Batch means.
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Initialization Bias |

» Methods to reduce the point-estimator bias caused by
using artificial and unrealistic initial conditions:

= Intelligent initialization.
= Divide simulation into an initialization phasc and
data collection phase.
= [ntelligent initialization

» Initialize the simulation in a state that is more
representative of long-run conditions.

= If the system exists, collect data on it and use these
data ta specify more nearly typical initial conditions.

» If the system can be simplified cnough to make it
mathematically solvable, e.g. queueing models, solve
the simplified model to find long run expected or most
likely conditions, use that to initialize the simulation.

= Divide each simulation into two phases:

= An initialization phase, from time 0 to time Ty.

Error Estimation |

| P U Y, } are not statistically independent, then
S2 /n is a biased estimator of the true variance.

» Almost always the case when {Y1,..., Y,} isa
sequence of output observations from within a single
replication (autocorrelated sequence, time-series).

» Suppose the point estimator 6 is the sample mean
— 1.5
Y = — ¥

» Variance of Y is very hard to estimate.

» For systems with steady state, produce an output
process Lhal I1s approximately covariance stalionary
(after passing the transient phase).
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Replication Method |

> Use to estimate point-estimator variability and to
construct a confidence interval.

» Approach: make R replications, initializing and deleting
from each one Lhe same way.

= Important to do a thorough job of investigating the
initial-condition bias:
= Bias is not affected by the number of replications,
instead, it is affected only by deleting more data (i.e.,
incrcasing 1) or extending the length of cach run (i.c.
increcasing Tg).
» Basic raw output data {Y,j,rz i Sy 4 _,|r'=1....,n}
is derived by:
= Individual observation from within replication r.

= Batch mean from within replication r of some number
of discrete-time obscrvations.

.Sample Size |

» To estimate a long run performance measure, 8, within
+& with confidence 100(1 — a)%.
» M/G/1 queueing example (cont.):
= We know: Rg = 10, d = 2 deleted and S& = 25.30.

» To estimate the long-run mean queue length, [ g, within
£ = 2 customers with 90% confidence (a = 10%).
= |nitial estimate:

17.1

p - (0sS0\? _ 1.645%(25.30) _

» Hence, at least 18 replications are needed, next try
R=18,19,... using R = (tﬂ_DEFE\_iSDij?‘ We found
that
R =19 > (fo.0s,r-15/€)° = (1..‘*32 - 25.3;’4) — 18.93

= Additional replications needed is R — Kg = 19 — 10 = 9.
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Batch Means for Interval Estimation

» Using a single, long replication:
» Problem: data are dependent so the usual estimator is
biased.
» Solution: batch means.
» Batch means: divide the output data from 1 replication
(after appropriate deletion) into a few large batches and
then treat the means of these batches as if they were

independent.

> A continuous-time process, {Y(t), To <t < To+ Tg}:

» k batches of size m = Tg/k, batch means:

- 1 pim _
Yj:— Y- To)dt, [ =3.2 k
mJ(j—1)m

» A discrete-time process, {Y;,i=d+1,d+2,...,n}:
» k batches of size m = (n — d)/ k, batch means:
_ 1 i :
Y"-:E Z yj+d1 _;:1.2.....k
i=j—1}m+1
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