

 Page No. 1

CANARA ENGINEERING COLLEGE
Benjanapadavu – 574219

Program: COMPUTER SCIENCE & ENGINEERING Course code:18CS53
Course Name: DATABASE MANAGEMENT SYSTEM

MODULE 2

Notes prepared by - (Name & Designation) : Mr.LOHIT B and Mr.SANTOSH

OBJECTIVE: Practice SQL programming through a variety of database problems

OUTCOME: Solve broad range of query and data updation problems using relational algebra and SQL.

Contents include:

No. of Weblinks: 3

No. of University Qs and As: 10

Structure of Notes

2.1 Introduction Domains, Attributes, Tuples , and Relations (VTU Question)

2.2 Relational Model Constraints (VTU Question)

2.3 Update Operations, Transactions & Dealing with Constraint Violations(VTU Question)

2.4 The Relational Algebra(VTU Question)

2.5 Relational Algebra Operations from Set Theory(VTU Question)

2.6 Binary Relational Operations: JOIN and DIVISION(VTU Question)

2.7 Notation for Query Trees

2.8 Additional Relational Operations

2.9 Examples of Queries in Relational Algebra (VTU Question)

2.10 LOGICAL DATABASE DESIGN: ER TO RELATIONAL(VTU Question)

2.11 Basic SQL

2.12 Basic Retrieval Queries in SQL(VTU Question)

2.13 INSERT, DELETE, and UPDATE Statements in SQL(VTU Question)

2.14 Additional Features of SQL

2.15 References

Database Management Systems

Lohith B and Santosh H , Dept of CSE,CEC 1

MODULE 2: The Relational Data Model and Relational Database

Constraints

Relational Model Concepts

 The relational model represents the database as a collection of relations. Informally, each

relation resembles a table of values.

 When a relation is thought of as a table of values, each row in the table represents a

collection of related data values. A row represents a fact that typically corresponds to a

real-world entity or relationship. The table name and column names are used to help to

interpret the meaning of the values in each row.

 In the formal relational model terminology, a row is called a tuple, a column header is

called an attribute, and the table is called a relation. The data type describing the types of

values that can appear in each column is represented by a domain of possible values.

2.1 Domains, Attributes, Tuples , and Relations :

 A domain D is a set of atomic values. Atomic means that each value in the domain is

indivisible as far as the formal relational model is concerned.

Example: Social_security_numbers: The nine-digit Social Security numbers.

Names: The set of character strings that represent names of persons.

 A data type or format is also specified for each domain.

Example: The data type for Employee_ages is an integer number between 15 and

80.

 A relation schema R, denoted by R(A1, A2, ...,An)is made up of a relation name Rand a

list of attributes A1, A2, ...,An. A relation schema is used to describe a relation; R is called

the name of this relation.

 The degree (or arity) of a relation is the number of attribute esn of its relation schema. A

relation of degree seven, would contain seven attributes describing each student.

STUDENT(Name, Ssn, Home_phone, Address, Office_phone, Age, Gpa)

 A relation (or relation state) r of the relation schema R(A1, A2, ..., An), also denoted by

r(R), is a set of n-tuples r = {t1, t2, ..., tm}. Each n-tuple t is an ordered list of n value st

=<v1, v2, ..., vn>,The terms relation intension for the schema R and relation extension

for a relation state r(R)are also commonly used.

Database Management Systems

Lohith B and Santosh H , Dept of CSE,CEC 2

Figure 3.1 shows an example of a STUDENT relation, which corresponds to the

STUDENT schema. Each tuple in the relation represents a particular student . NULL

values represent attributeswhose values are unknown or do not exist for some individual

STUDENT tuple.

2.1.2 Characteristics of Relations

 1. Ordering of Tuples in a Relation.

 A relation is defined as a set of tuples. Elements of a set have no order among

them; hence, tuples in a relation do not have any particular order.

 The definition of a relation does not specify any order: There is no preference for

one ordering over another. Hence, the relation displayed in Figure 3.2 is

considered identical to the one shown in Figure 3.1.

Database Management Systems

Lohith B and Santosh H , Dept of CSE,CEC 3

 2. Ordering of Values within a Tuple and an Alternative Definition of a Relation.

 The order of attributes and their values is not that important as long as the

correspondence between attributes and values is maintained.

 An alternative definition of a relation can be given, making the ordering of values

in a tuple unnecessary. In this definition, a relation schema R = {A1, A2, ..., An} is

a set of attributes and a relation state r(R) is a finite set of mapping sr = {t1, t2, ...,

tm}, where each tuple ti is a mapping from R to D, and D is the union (denoted by

∪) of the attribute domains; that is, D = dom(A1) ∪dom(A2) ∪... dom(An). In this

definition, t[Ai] must be in dom(Ai) for 1 ≤i ≤n for each mapping t in r. Each

mapping ti is called a tuple.

 According to this definition of tuple as a mapping, a tuple can be considered as a

set of (<attribute>, <value>) pairs. The ordering of attributes is not important,

because the attribute name appears with its value. By this definition, the two tuples

shown in Figure 3.3 are identical.

3. Values and NULLs in the Tuples.

 Each value in a tuple is an atomic value; that is, it is not divisible. Hence, composite

and multivalued attributes are not allowed.

 The multivalued attributes must be represented by separate relations, and composite

attributes are represented only by their simple component attributes in the basic

relational model.

 An important concept is that of NULL values, which are used to represent the values

of attributes that may be unknown or may not apply to a tuple.

Database Management Systems

Lohith B and Santosh H , Dept of CSE,CEC 4

Example: STUDENT tupleshave NULL for their office phones because they

do not have an office . Another student has a NULL for homephone, presumably

because either he does not have a home phone or he has one butwe do not know it

(value is unknown).

 In general, we can have several meanings for NULL values, such as value unknown,

value exists but is not available, or attribute does not apply to this tuple. An

example of the last type of NULL will occur if we add an attribute Visa_status to the

STUDENT relation that applies only to tuples representing foreign students.

 During database design, it is best to avoid NULL values as much as possible

4. Interpretation (Meaning) of a Relation.

 Each tuple in the relation can be interpreted as a fact or a particular instance of the

assertion. For example, a STUDENT relation whose Name is Benjamin Bayer, Ssn is

305-61-2435, Age is 19, and so on.

 Relations may represent facts about entities, whereas other relations may represent facts

about relationships. For example, a relation schema MAJORS(Student_ssn,

Department_code) asserts that students major in academic disciplines. A tuple in this

relation relates a student to his or her major discipline. Hence, the relational model

represents facts about both entities and relationships uniformly as relations.

2.2 Relational Model Constraints :

There are generally many restrictions or constraints on the actual values in a database

state. These constraints are derived from the rules in the mini world that the database

represents. Constraints on databases can generally be divided into three main categories:

1. Inherent model-based constraints or implicit constraints.

 Are the constraints that are inherent in the data model. The characteristics of

relations (Please refer 3.1.2) are the inherent constraints of the relational

model.

 For example, the constraint that a relation cannot have duplicate

tuples is an inherent constraint

2. Application-based or semantic constraints or business rules.

Database Management Systems

Lohith B and Santosh H , Dept of CSE,CEC 5

 Are the constraints that cannot be directly expressed in the schemas of the data

model, and hence must be expressed and enforced by the application programs.

 Examples of such constraints are the salary of an employee should not

exceed the salary of the employee’s supervisor and the maximum number of

hours an employee can work on all projects per week is 56.

 Such constraints can be specified and enforced within the application programs

that update the database, or by using a general-purpose constraint specification

language. Mechanisms called triggers and assertions can be used. In SQL,

CREATE ASSERTION and CREATE TRIGGER statements can be used for this

purpose.

 3. Schema-based constraints or explicit constraints

 Are the constraints that can be directly expressed in schemas of the data

model, typically by specifying them in the DDL (data definition language).The

schema-based constraints include domain constraints, key constraints,

constraints on NULLs, entity integrity constraints, and referential integrity

constraints.

2.2.1 Domain Constraints

 Domain constraints specify that within each tuple, the value of each attribute A

must be an atomic value from the domain dom(A).The data types associated with

domains typically include standard numeric data types for integers, Characters,

Booleans, fixed-length strings, variable-length strings, date, time and timestamp.

2.2.2 Key Constraints and Constraints on NULL Values.

 In the formal relational model, a relation is defined as a set of tuples. By definition, all

elements of a set are distinct. This means that no two tuples can have the same

combination of values for all their attributes.

 The subsets of attributes of a relation schema R with the property that no two tuples

in any relation state r of R should have the same combination of values for these

attributes i.e for any two distinct tuples t1 and t2 in a relation state r of R, we have

the constraint that:t1[SK]≠t2[SK]any such set of attributes SK is called a super key

of the relation schema R.

Database Management Systems

Lohith B and Santosh H , Dept of CSE,CEC 6

 A super key can have redundant attributes, however, so a more useful concept is that

of a key, which has no redundancy.

 A key K of a relation schema R is a super key of R with the additional property that

removing any attribute A from K leaves a set of attributes K that is not a super key

of R anymore. Hence, a key satisfies two properties:

1. Two distinct tuples in any state of the relation cannot have identical

values for (all) the attributes in the key. This first property also applies

to a super key.

2. It is a minimal super key—that is, a super key from which we cannot

remove any attributes and still have the uniqueness constraint in

condition 1 hold. This property is not required by a super key.

 The first property applies to both keys and super keys, the second property is required

only for keys. Hence, a key is also a super key but not vice versa.

 Consider the STUDENT relation. The attribute set {Usn} is a key of STUDENT

because no two student tuples can have the same value for Usn.

 Any set of attributes that includes Usn for example, {Ssn, Name, Age}—is a super

key. However, the superkey {Ssn, Name, Age} is not a key of STUDENT because

removing Name or Age or both from the set still leaves us with a super key.

 In general, a relation schema may have more than one key. In this case, each of the keys

is called a candidate key. For example, the CAR relation in Figure 3.4 has two candidate

keys: License_number and Engine_serial_number. It is common to designate one of the

candidate keys as the primary key of the relation. This is the candidate key whose values

are used to identify tuples in the relation. The other candidate keys are designated as

unique keys, and are not underlined.

Example 2: Consider the following relation : Book (BookId, BookName, Author)

Database Management Systems

Lohith B and Santosh H , Dept of CSE,CEC 7

 Super Keys : A Super Key is a set of one or more attributes that are taken

collectively and can identify all other attributes uniquely.

 For Example,

(BookId)

(BookId,BookName)

(BookId, BookName, Author)

(BookId, Author)

(BookName, Author)

 Candidate Keys Candidate keys are a super key which are not having any

redundant attributes. In other words candidate keys are minimal super keys.

For Example,

(BookId)

(BookName,Author)

 These two keys can be candidate keys, as remaining keys are having redundant

attributes. Means in super key (BookId, BookName) record can be uniquely

identify by just BookId and therefore BookName is redundant attribute

 Primary Key: A key which is used to uniquely identify each record is known as

primary key. From above Candidate keys any one can be the primary key.

2.2.3 Relational Databases and Relational Database Schemas.

 A relational database schema S is a set of relation schemas S = {R1, R2, ..., Rm}

and a set of integrity constraints IC.

 A relational database state DB of S is a set ofrelation states DB = {r1, r2, ..., rm}

such that each ri is a state of Ri and such that theri relation states satisfy the

integrity constraints specified in IC.

Figure 3.5 shows a relational database schema that we call COMPANY =

{EMPLOYEE, DEPARTMENT,DEPT_LOCATIONS,PROJECT, WORKS_ON,

DEPENDENT}. The underlined attributes represent primary keys. A database

state that does not obey all the integrity constraints iscalled an invalid state, and

a state that satisfies all the constraints in the defined setof integrity constraints

IC is called a valid state.

Database Management Systems

Lohith B and Santosh H , Dept of CSE,CEC 8

2.2.4 Integrity, Referential Integrity, and Foreign Keys

 The entity integrity constraint states that no primary key value can be NULL. This

is because the primary key value is used to identify individual tuples in a relation.

Having NULL values for the primary key implies that we cannot identify some

tuples.

 For example, if two or more tuples had NULL for their primary keys, we

maynot be able to distinguish them if we try to reference them from other

relations.Key constraints and entity integrity constraints are specified on

individual relations.

 The referential integrity constraint is specified between two relations and is used to

maintain the consistency among tuples in the two relations. Informally, the

referential integrity constraint states that a tuple in one relation that refers to

another relation must refer to an existing tuple in that relation.

 For example, The attribute Dno of EMPLOYEE gives the department

number for which eachemployee works; hence, its value in every

EMPLOYEE tuple must match the Dnumbervalue of some tuple in the

DEPARTMENT relation.

 The formal definition of referential integrity is, Consider a set of attributes FK in

relation schema R1 is a foreign key of R1 that references relation R2 if it satisfies

the following rules:

Database Management Systems

Lohith B and Santosh H , Dept of CSE,CEC 9

1. The attributes in FK have the same domain(s) as the primary key

attributes PK of R2; the attributes FK are said to reference or refer to the

relation R2.

2. A value of FK in a tuple t1 of the current state r1(R1) either occurs as a

value of PK for some tuple t2 in the current state r2(R2) or is NULL.

According to previous case, t1[FK] = t2[PK]. The tuple t1 references

orrefers to the tuple t2.

 In this definition, R1 is called the referencing relation and R2 is the referenced relation.

If these two conditions hold, a referential integrity constraint from R1 to R2 is said to

hold. In a database of many relations, there are usually many referential integrity

constraints.

 For example, In the EMPLOYEE relation, the attribute Dno refers to the

department for which an employee works; hence, we designate Dno to be a foreign key

of EMPLOYEE referencing the DEPARTMENT relation. This means that a value of

Dno in any tuple t1 of the EMPLOYEE relation must match a value of the primary key

of DEPARTMENT.

2.3 Update Operations, Transactions & Dealing with Constraint Violations

There are three basic operations that can change the states of relations in the database:

Insert, Delete, and Update. Insert is used to insert one or more new tuples in a relation,

Database Management Systems

Lohith B and Santosh H , Dept of CSE,CEC 10

Delete is used to delete tuples, and Update is used to change the values of some attributes

in existing tuples

2.3.1 The Insert Operation

 The Insert operation provides a list of attribute values for a new tuple t that is to be

inserted into a relation R.

 Insert can violate any of the four types of constraints.

1. Domain constraints can be violated if an attribute value is given that

does not appear in the corresponding domain or is not of the

appropriate data type.

2. Key constraints can be violated if a key value in the new tuple t

already exists in another tuple in the relation r(R).

3. Entity integrity can be violated if any part of the primary key of the

new tuple t is NULL.

4. Referential integrity can be violated if the value of any foreign key in

t refers to a tuple that does not exist in the referenced relation.

For Example:

 Operation 1:

Insert <‘Cecilia’, ‘F’, ‘Kolonsky’, NULL, ‘1960-04-05’, ‘6357 Windy Lane,

Katy,TX’, F, 28000, NULL, 4> into EMPLOYEE.

Result: This insertion violates the entity integrity constraint (NULL for

theprimary key Ssn), so it is rejected.

 Operation 2:

Insert <‘Alicia’, ‘J’, ‘Zelaya’, ‘999887777’, ‘1960-04-05’, ‘6357 Windy Lane,

Katy,TX’, F, 28000, ‘987654321’, 4> into EMPLOYEE.

Result: This insertion violates the key constraint because another tuple

withthe same Ssn value already exists in the EMPLOYEE relation, and so it

isrejected.

 Operation 3:

Insert <‘Cecilia’, ‘F’, ‘Kolonsky’, ‘677678989’, ‘1960-04-05’, ‘6357

Windswept,Katy, TX’, F, 28000, ‘987654321’, 7> into EMPLOYEE.

Database Management Systems

Lohith B and Santosh H , Dept of CSE,CEC 11

Result: This insertion violates the referential integrity constraint specified

onDno in EMPLOYEE because no corresponding referenced tuple exists

inDEPARTMENT with Dnumber = 7.

 Operation 4:

Insert <‘Cecilia’, ‘F’, ‘Kolonsky’, ‘677678989’, ‘1960-04-05’, ‘6357 Windy

Lane,Katy, TX’, F, 28000, NULL, 4> into EMPLOYEE.

Result: This insertion satisfies all constraints, so it is acceptable.

2.3.2 The Delete Operation

 The Delete operation can violate only referential integrity. This occurs if the tuple

being deleted is referenced by foreign keys from other tuples in the database. To

specify deletion, a condition on the attributes of the relation selects the tuple (ortuples)

to be deleted.

Here are some examples.

 Operation 1:

 Delete the WORKS_ON tuple with Essn = ‘999887777’ and Pno =10.

Result: This deletion is acceptable and deletes exactly one tuple.

 Operation 2:

 Delete the EMPLOYEE tuple with Ssn = ‘333445555’.

Result: This deletion will result in even worse referential integrity

violations, because the tuple involved is referenced by tuples from the

EMPLOYEE,DEPARTMENT,WORKS_ON, and DEPENDENT relations.

 Several options are available if a deletion operation causes a violation. The first option,

called restrict, is to reject the deletion. The second option, called cascade, is to attempt

to cascade (or propagate) the deletion by deleting tuples that reference the tuple that is

being deleted. A third option, called set null or set default, is to modify the referencing

attribute values that cause the violation; each such value is either set to NULL or

changed to reference another default valid tuple.

2.3.3 The Update Operation

Database Management Systems

Lohith B and Santosh H , Dept of CSE,CEC 12

The Update (or Modify) operation is used to change the values of one or more

attributes in a tuple (or tuples) of some relation R. It is necessary to specify a condition on the

attributes of the relation to select the tuple (or tuples) to be modified.

Here are some examples.

 Operation 1:

 Update the salary of the EMPLOYEE tuple with Ssn = ‘999887777’ to 28000.

Result: Acceptable.

 Operation 2:

Update the Dno of the EMPLOYEE tuple with Ssn = ‘999887777’ to 1.

Result: Acceptable.

 Operation 3:

Update the Dno of the EMPLOYEE tuple with Ssn = ‘999887777’ to 7.

Result: Unacceptable, because it violates referential integrity.

 Operation 4:

 Update the Ssn of the EMPLOYEE tuple with Ssn = ‘999887777’ to‘987654321’.

Result: Unacceptable, because it violates primary key constraint by repeating a

value that already exists as a primary key in another tuple; it violates referential

integrity constraints because there are other relations that refer to the existing value of

Ssn.

2.3.4 The Transaction Concept

 A transaction is an executing program that includessome database operations, such

as reading from the database, or applying insertions,deletions, or updates to the

database. At the end of the transaction, it mustleave the database in a valid or

consistent state that satisfies all the constraints specifiedon the database schema.

 For example, a transaction to apply a bank withdrawalwill typically read the user

account record, check if there is a sufficient balance,and then update the record by the

withdrawal amount.A large number of commercial applications running against

relational databases inonline transaction processing (OLTP) systems are executing

transactions at ratesthat reach several hundred per second.

Database Management Systems

Lohith B and Santosh H , Dept of CSE,CEC 13

2.4 The Relational Algebra:

 The basic set of operations for the relational model is the relational algebra.

 The relational algebra is very important for several reasons. First, it provides a formal

Foundation for relational model operations. Second, ,it is used as a basis for

implementing and optimizing queries in the query processing and optimization

modules that are integral parts of relational database management systems

(RDBMSs)

2.4 .1 Unary Relational Operations: SELECT and PROJECT.

2.4.1.1 The SELECT Operation.

 The SELECT operation is used to choose a subset of the tuples from a relation

that satisfies a selection condition.

 The SELECT operation is visualized as a horizontal partition of the relation into

two sets of tuples. Those tuples that satisfy the condition are selected, and those

tuples that do not satisfy the condition are discarded.

 In general, the SELECT operation is denoted by σ <selection

condition>(R)where the symbol σ (sigma) is used to denote the SELECT operator

and the selection condition is a Boolean expression (condition) specified on the

attributes of relation R.

 Example 1: To select the EMPLOYEE tuples whose department is4, or

those whose salary is greater than $30,000, we can individually specify each of

these two conditions with a SELECT operation as follows:

σDno=4(EMPLOYEE)

σSalary>3000(EMPLOYEE)

 The Boolean expression specified in <selection condition> is made up of a numberof

clauses of the form

<attribute name><comparison op><constant value>

Database Management Systems

Lohith B and Santosh H , Dept of CSE,CEC 14

or

<attribute name><comparison op><attribute name>

 Example 2: To select the tuples for all employees who either work in department 4

and make over $25,000 per year, or work in department 5 and make over $30,000, we

can specify the following SELECT operation:

σ (Dno=4 AND Salary>25000) OR (Dno=5 AND Salary>30000)(EMPLOYEE)

 Figure 6.1 shows the result of SELECT operation.

 In SQL, the SELECT condition is typically specified in the WHERE clause of a query.

 For example, the following operation: σDno=4 AND Salary>25000

(EMPLOYEE) Would correspond to the following SQL query:

SELECT * FROM EMPLOYEE

WHERE Dno=4 AND Salary>25000;

3.4.1.2. The PROJECT Operation

 The SELECT operation chooses some of the rowsfrom the table while discarding

other rows. The PROJECT operation, on the otherhand, selects certain columns from

the table and discards the other columns.

Example 3: To list each employee’s first and last name and salary, we can use the

PROJECT operation as follows:

πLname, Fname, Salary(EMPLOYEE)

 The resulting relation is shown in Figure 6.1(b).

Database Management Systems

Lohith B and Santosh H , Dept of CSE,CEC 15

 The general form of the PROJECT operation is π<attribute list>(R) where π (pi) is the

symbol used to represent the PROJECT operation, and <attributelist> is the desired sub

list of attributes from the attributes of relation R

 The PROJECT operation removes any duplicate tuples, so the result of the PROJECT

operation is a set of distinct tuples, and hence a valid relation. This is known as duplicate

elimination.

 For Example: Consider the following PROJECT operation: πSex, Salary(EMPLOYEE).

In SQL, the PROJECT attribute list is specified in the SELECT clause of a query.

SELECT DISTINCT Sex, Salary FROM EMPLOYEE

2.4.1.3. Sequences of Operations and the RENAME Operation

 For example, To retrieve the first name, last name, and salary of all employees

who work in department number 5, we must apply a SELECT and a PROJECT

operation.

πFname, Lname, Salary (σDno=5(EMPLOYEE))

 Alternatively, we can explicitly show the sequence of operations, giving a name to

Each intermediate relation, as follows:

 DEP5_EMPS ← σDno=5(EMPLOYEE)

 RESULT ← πFname, Lname, Salary (DEP5_EMPS)

 To rename the attributes in a relation, list the new attribute names in parentheses,

as in the following example:

Database Management Systems

Lohith B and Santosh H , Dept of CSE,CEC 16

 TEMP ← σDno=5(EMPLOYEE)

 R(First_name, Last_name, Salary) ← πFname, Lname, Salary(TEMP)

 The general RENAME operation when applied to a relation R of degree n is denoted by

any of the following three forms:

ρS(B1, B2, ..., Bn)(R) or ρS(R) orρ(B1, B2, ..., Bn)(R)

 Where the symbol ρ (rho) is used to denote the RENAME operator, S is the new

relation name, and B1, B2, ..., Bn are the new attribute names.

SELECT E.Fname AS First_name, E.Lname AS Last_name, E.Salary AS Salary

FROM EMPLOYEE AS E WHERE E.Dno=5.

2.5 Relational Algebra Operations from Set Theory

2.5.1 The UNION, INTERSECTION, and MINUS Operations

 For example, To retrieve the Social Security numbers of all employees who either

work in department 5 or directly supervise an employee who works in department 5.

DEP5_EMPS ← σDno=5(EMPLOYEE)

RESULT1 ← πSsn(DEP5_EMPS)

Database Management Systems

Lohith B and Santosh H , Dept of CSE,CEC 17

RESULT2(Ssn) ← πSuper_ssn(DEP5_EMPS)

RESULT ← RESULT1 ∪ RESULT2

 The relation RESULT1 has the Ssn of all employees who work in department 5,where

as RESULT2 has the Ssn of all employees who directly supervise an employee who

works in department 5. The UNION operation produces the tuples that are in either

RESULT1 or RESULT2 or both (see Figure 6.3), while eliminating any duplicates.

Thus, the Ssn value ‘333445555’ appears only once in the result.

We can define the three operations UNION, INTERSECTION, and SET DIFFERENCE

on two union-compatible relations R and S as follows:

 UNION: The result of this operation, denoted by R∪S, is a relation that includes all

tuples that are either in R or in S or in both R and S. Duplicate tuples are eliminated.

 INTERSECTION: The result of this operation, denoted by R ∩S, is a relation that

includes all tuples that are in both R and S.

 SET DIFFERENCE (or MINUS): The result of this operation, denoted byR – S, is a

relation that includes all tuples that are in R but not in S.

 The relations STUDENT and INSTRUCTOR in Figure 6.4(a) are union compatible

and their tuples represent the names of students and the names of instructors,

respectively.

 The result of the UNION operation in Figure 6.4(b) shows the names of all students

and instructors. Note that duplicate tuples appear only once in the result.

 The result of the INTERSECTION operation, Figure 6.4(c) includes only those who

are both students and instructors.

 Figure 6.4(d) shows the names of students who are not instructors.

 Figure 6.4(e) shows the names of instructors who are not students.

Database Management Systems

Lohith B and Santosh H , Dept of CSE,CEC 18

 UNION and INTERSECTION are commutative operations; that is,

R ∪ S = S ∪ R and R ∩ S = S ∩ R

 UNION and INTERSECTION can be treated as n-ary operations applicable to any

number of relations because both are also associative operations; that is,

R ∪ (S ∪ T) = (R ∪ s) v T and (R ∩ S) ∩ T = R ∩ (S ∩ T)

 The MINUS operation is not commutative; that is, in general, R − S ≠ S – R

 INTERSECTION can be expressed in terms of union and set difference as follows:

R ∩ S = ((R ∪ S) − (R − S)) − (S − R).

 In SQL, there are three operations UNION, INTERSECT, and EXCEPT that

correspond to the set operations.

2.5.2 The CARTESIAN PRODUCT (CROSS PRODUCT)Operation.

 The CARTESIAN PRODUCT operation—also known as CROSSPRODUCT

or CROSS JOIN—which is denoted by X.

 Cartesian Product produces a new element by combining every member (tuple) of

one relation (set) with every member (tuple) from the other relation (set).

Database Management Systems

Lohith B and Santosh H , Dept of CSE,CEC 19

 The result of R(A1, A2, ..., An) X S(B1, B2, ..., Bm) is a relation Q with degree n +

m attributes Q(A1, A2, ..., An, B1, B2, ..., Bm).

 The CARTESIAN PRODUCT creates tuples with the combined attributes of two

relations. We can SELECT related tuples from the two relations by specifying an

appropriate selection condition after the Cartesian product,

 For example, suppose that we want to retrieve a list of names of

each female employee’s dependents.

FEMALE_EMPS ← σSex=‘F’(EMPLOYEE)

EMPNAMES← πFname, Lname, Ssn(FEMALE_EMPS)

EMP_DEPENDENTS ← EMPNAMES × DEPENDENT

ACTUAL_DEPENDENTS ← σSsn=Essn(EMP_DEPENDENTS)

RESULT ← πFname, Lname, Dependent_name(ACTUAL_DEPENDENTS)

 The resulting relations from this sequence of operations are shown in Figure 6.5.

Database Management Systems

Lohith B and Santosh H , Dept of CSE,CEC 20

2.6 Binary Relational Operations: JOIN and DIVISION

 2.6.1 The JOIN Operation

 The JOIN operation, denoted by , is used to combine related tuples from two

relations into single “longer” tuples.

 The general form of a JOIN operation on two relations R(A1, A2, ..., An) and

S(B1,B2, ..., Bm) is R <join condition>S.

 The result of the JOIN is a relation Q with n + m attributes Q(A1, A2, ..., An, B1,B2, ...,

Bm) in that order; Q has one tuple for each combination of tuples—one from R and

one from S—whenever the combination satisfies the join condition. This is the main

difference between CARTESIAN PRODUCT and JOIN. In JOIN, only combinations

of tuples satisfying the join condition appear in the result, whereas in the

CARTESIAN PRODUCT all combinations of tuples are included in the result.

 To illustrate JOIN, suppose that we want to retrieve the nameof the manager of

each department. To get the manager’s name, we need to combine each department

tuple with the employee tuple whose Ssn value matches the Mgr_ssn value in the

department tuple.

Consider the earlier example illustrating CARTESIAN PRODUCT, which included the

following sequence of operations:

Database Management Systems

Lohith B and Santosh H , Dept of CSE,CEC 21

 These two operations can be replaced with a single JOIN operation as follows:

 ACTUAL_DEPENDENTS ← EMPNAMES Ssn=EssnDEPENDENT

 A general join condition is of the form :

 <Condition>AND <condition>AND...AND <condition>

 where each <condition> is of the form Ai θ Bj, Ai is an attribute of R, Bj is an

attribute of S, A JOIN operation with such a general join condition is called a THETA

JOIN.

2.6.2 Variations of JOIN: The EQUI JOIN and NATURAL JOIN

 The JOIN operation where the only comparison operator used is = in join condition is

called an EQUIJOIN.

 EQUIJOIN always have one or more pairs of attributes that have identical valuesin

every tuple.

 For example, in Figure 6.6, the values of the attributes Mgr_ssn and Ssn are

identical in every tuple of DEPT_MGR (the EQUIJOIN result) because the equality

join condition specified on these two attributes requires the values to be identical in

every tuple in the result.

 Because one of each pair of attributes with identical values is superfluous, a new

operation called NATURAL JOIN denoted by * was created to get rid of the second

(superfluous) attribute in an EQUIJOIN condition.

 The standard definition of NATURAL JOIN requires that the two join attributes have

the same name in both relations. If this is not the case, a renaming operation is applied

first.

 Suppose we want to combine each PROJECT tuple with the DEPARTMENT tuple

that controls the project. In the following example, first we rename the Dnumber

Database Management Systems

Lohith B and Santosh H , Dept of CSE,CEC 22

attribute of DEPARTMENT to Dnum so that it has the same name as the Dnum

attribute in PROJECT and then we apply NATURAL JOIN:

 PROJ_DEPT←PROJECT*ρ (Dname, Dnum, Mgr_ssn, Mgr_start_date)(DEPARTMENT)

 The same query can be done in two steps by creating an intermediate table DEPT as

follows:

DEPT ←ρ(Dname, Dnum, Mgr_ssn, Mgr_start_date)(DEPARTMENT)

PROJ_DEPT ←PROJECT * DEPT

 The attribute Dnum is called the join attribute for the NATURAL JOIN operation,

because it is the only attribute with the same name in both relations. The resulting

relation is illustrated in Figure 6.7(a).

 If the attributes on which the natural join is specified already have the same names in

both relations, renaming is unnecessary. For example, to apply a natural join on the

Dnumber attributes of DEPARTMENT and DEPT_LOCATIONS, it is sufficient to

write. The resulting relation is shown in Figure 6.7(b),

DEPT_LOCS ←DEPARTMENT * DEPT_LOCATIONS

Database Management Systems

Lohith B and Santosh H , Dept of CSE,CEC 23

 A single JOIN operation is used to combine data from two relations so that related

information can be presented in a single table. These operations are also known as

inner joins. An inner join is a type of match and combine operation defined formally

as a combination of CARTESIAN PRODUCT and SELECTION.

2.6.3 The DIVISION Operation

 The division operator is an interesting operator that is useful in answering queries that

involve “for all” statements.

 The DIVISION operation, denoted by ÷, is useful for a special kind of query that

sometimes occurs in database applications.

An example is Retrieve the names of employees who works for all the

projects that ‘John Smith’ works on. To express this query using the DIVISION

operation, proceed as follows. First, retrieve the list of project numbers that ‘John

Smith’ works on in the intermediate relation SMITH_PNOS:

SMITH ← σFname=‘John’ AND Lname=‘Smith’(EMPLOYEE)

SMITH_PNOS ← πPno(WORKS_ON Essn=SsnSMITH)

SSN_PNOS ← πEssn, Pno(WORKS_ON)

SSNS(Ssn) ← SSN_PNOS ÷ SMITH_PNOS

RESULT ← πFname, Lname(SSNS * EMPLOYEE)

 The preceding operations are shown in Figure 6.8(a).

Database Management Systems

Lohith B and Santosh H , Dept of CSE,CEC 24

 In the formulation of the DIVISION operation, the tuples in the denominator relation

S restrict the numerator relation R by selecting those tuples in the result that match all

values present in the denominator.

 As illustrated in the SMITH_PNOS relation in the above example. Figure 6.8(b)

illustrates a DIVISION operation where X = {A}, Y = {B}, and Z = {A,B}. Notice

that the tuples (values) b1 and b4 appear in R in combination with all three tuples in

S; that is why they appear in the resulting relation T. All other values of B in R do not

appear with all the tuples in S and are not selected: b2 does not appear with a2, and b3

does not appear with a1.

List of the various basic relational algebra operations:

Database Management Systems

Lohith B and Santosh H , Dept of CSE,CEC 25

2.7 Notation for Query Trees

 A query tree is a tree data structure that corresponds to a relational algebra

expression. It represents the input relations of the query as leaf nodes of the tree, and

represents the relational algebra operations as internal nodes.

 An execution of the query tree consists of executing an internal node operation

whenever its operands(represented by its child nodes) are available, and then

replacing that internal node by the relation that results from executing the operation.

 Figure 6.9 shows a query tree for Query 2 .

 For every project located in ‘Stafford’, list the project number, the controlling

department number, and the department manager’s last name, address, and birth date.

 In Figure 6.9, the three leaf nodes P, D, and E represent the three relations PROJECT,

 DEPARTMENT and EMPLOYEE. The relational algebra operations in the expression

 are represented by internal tree nodes.

 The query tree signifies an explicit order ofexecution in the following sense. In order to

execute Q2, the node marked (1) in Figure 6.9 must begin execution before node (2)

because some resulting tuples of operation (1) must be available before we can begin to

execute operation (2).Similarly, node (2) must begin to execute and produce results

before node (3) canstart execution, and so on.

Database Management Systems

Lohith B and Santosh H , Dept of CSE,CEC 26

2.8 Additional Relational Operations

 2.8.1 Generalized Projection

 The generalized projection operation extends the projection operation by allowing

functions of attributes to be included in the projection list.

 The generalized form can be expressed as:πF1, F2, ..., Fn (R)where F1, F2, ..., Fn are

functions over the attributes in relation R and may involve arithmetic operations and

constant values.

Example, consider the relation EMPLOYEE (Ssn, Salary, Deduction,

Years_service) A report may be required to show

Net Salary = Salary – Deduction,

Bonus = 2000 * Years_service, and

Tax = 0.25 * Salary.

 Then a generalized projection combined with renaming may be used as follows:

 A ← π (Ssn, Salary – Deduction, 2000 * Years_service,0.25 * Salary)(EMPLOYEE)).

 REPORT←ρ (Ssn, Net_salary, Bonus, Tax) (A).

2.8.2 Aggregate Functions and Grouping

 Aggregate functions are used in simple statistical queries that summarize information

from the database tuples. Some of the aggregate functions are SUM, AVERAGE,

MAXIMUM, and MINIMUM. The COUNT function is used for counting tuples or

values.

 AGGREGATE FUNCTION operation can be defined using the symbol ℑ(pronounced

script F).

<grouping attributes>ℑ<function list> (R)

Where <grouping attributes> is a list of attributes of the relation specified in

R,<function list> is a list of (<function><attribute>) pairs. In each such

pair,<function> is one of the functions such as SUM, AVERAGE,

MAXIMUM,MINIMUM, COUNT.

Database Management Systems

Lohith B and Santosh H , Dept of CSE,CEC 27

For example, to retrieve each department number, the number

of employees in the department, and their average salary,

 ρR(Dno,No_of_employees,Average_sal)(DnoℑCOUNTSsn,AVERAGESalary(EMPLOYEE))

 The result of this operation on the EMPLOYEE is shown in Figure 6.10(a).

 If no renaming operation is applied, then the resulting relation will be in the form

<function_attribute>. For example, Figure 6.10(b) shows the result of the

following operation:

DnoℑCOUNT Ssn, AVERAGE Salary (EMPLOYEE)

 If no grouping attributes are specified, the functions are applied to all the tuples in

the relation, so the resulting relation has a single tuple only. For example,

Figure6.10(c) shows the result of the following operation:

ℑCOUNT Ssn, AVERAGE Salary(EMPLOYEE)

2.8.3 Recursive Closure Operations

 Recursive closure operation cannot be specified in the relational algebra. This

operation is applied to a recursive relationshipbetween tuples of the same type, such

as the relationship between anemployee and a supervisor.

Database Management Systems

Lohith B and Santosh H , Dept of CSE,CEC 28

 This relationship is described by the foreign key Super_ssnof the EMPLOYEE

relation.

 An example of a recursive operation is to retrieve all SUPERVISEES of an

EMPLOYEE e at all levels—that is, all EMPLOYEE e’ directly supervised by e; all

employees e’’ directly supervised by each employee e’; all employees e’’’ directly

supervised by each employee e’’; and so on

 For example, To specify the Ssns of all employees directly

supervised by James Borg’ at level one.

BORG_SSN ← πSsn(σFname=‘James’ AND Lname=‘Borg’(EMPLOYEE))

SUPERVISION (Ssn1, Ssn2) ← πSsn,Super_ssn(EMPLOYEE)

RESULT1(Ssn) ← πSsn1(SUPERVISION Ssn2=SsnBORG_SSN)

 For example. To retrieve all employees supervised by Borg at level 2 is

as follows:

RESULT2(Ssn) ← πSsn1(SUPERVISION Ssn2=SsnRESULT1)

 To get both sets of employees supervised at levels 1 and 2 by ‘James Borg’, we canapply

the UNION operation to the two results, as follows:

RESULT ← RESULT2 ∪ RESULT1

 The results of these queries are illustrated in Figure 6.11.

Database Management Systems

Lohith B and Santosh H , Dept of CSE,CEC 29

2.8.4 OUTER JOIN Operations.

 A NATURAL JOIN operation R * S, only tuples from R that have matching tuples in

S and vice versa appear in the result. Hence, tuples without a matching tuple are

eliminated from the JOIN result. Tuples with NULL values in the join attributes are

also eliminated. This type of join, where tuples with no match are eliminated, is

known as an inner Join.

 A set of operations, called outer joins, is the case where the user wants to keep all

the tuples in R, or all those in S, or all those in both relations in the result of the JOIN,

 There are three types of outer join operations: left outer join, right outer join, and

full outer join.

Left Outer Join Operation

The left outer join is written as R ⟕ S where R and S are relations. The result of the

left outer join is the set of all combinations of tuples in R and S that are equal on their

common attribute names, in addition to tuples in R that have no matching tuples in S. If no

matching tuple is found in S, then the attributes of S in the join result are filled or padded

with NULL values

For an example considers the tables Employee and Dept and their left outer join:

Employee

Name EmpId DeptName

Harry 3415 Finance

Sally 2241 Sales

Dept

DeptName Manager

Sales Harriet

Production Charles

Employee ⟕ Dept

Name EmpId DeptName Manager

Harry 3415 Finance NULL

Sally 2241 Sales Harriet

https://en.wikipedia.org/wiki/Relation_(database)

Database Management Systems

Lohith B and Santosh H , Dept of CSE,CEC 30

George 3401 Finance

Harriet 2202 Sales

Tim 1123 Executive

George 3401 Finance NULL

Harriet 2202 Sales Harriet

Tim 1123 Executive NULL

Right Outer Join Operation

The right outer join of relations R and S is written as R ⟖ S. The result of the

right outer join is the set of all combinations of tuples in R and S that are equal on

their common attribute names, in addition to tuples in S that have no matching tuples

in R.

For example, consider the tables Employee and Dept and their right outer join:

Employee

Name EmpId

Dept

Name

Harry 3415 Finance

Sally 2241 Sales

George 3401 Finance

Harriet 2202 Sales

Tim 1123 Executive

Dept

DeptName Manager

Sales Harriet

Production Charles

Employee ⟖ Dept

Name

Emp

Id

DeptName Manager

Sally 2241 Sales Harriet

Harriet 2202 Sales Harriet

NULL NULL Production Charles

 In the resulting relation, tuples in R which have no common values in common attribute

names with tuples in S take a null value.

https://en.wikipedia.org/wiki/Relation_(database)

Database Management Systems

Lohith B and Santosh H , Dept of CSE,CEC 31

FULL Outer join Operation.

 The outer join or full outer join in effect combines the results of the left and right

outer joins.

 The full outer join is written as R ⟗ S where R and S are relations. The result of

the full outer join is the set of all combinations of tuples in R and S that are equal

on their common attribute names, in addition to tuples in S that have no matching

tuples in R and tuples in R that have no matching tuples in S in their common

attribute names.

For an example considers the tables Employee and Dept and their full outer

join:

Employee

Name EmpId
DeptNa

me

Harry 3415 Finance

Sally 2241 Sales

George 3401 Finance

Harriet 2202 Sales

Tim 1123
Executiv

e

Dept

DeptName Manager

Sales Harriet

Production Charles

Employee ⟗ Dept

Name EmpId DeptName Manager

Harry 3415 Finance NULL

Sally 2241 Sales Harriet

George 3401 Finance NULL

Harriet 2202 Sales Harriet

Tim 1123 Executive NULL

NULL NULL Production Charles

 In the resulting relation, tuples in R which have no common values in common

attribute names with tuples in S take a null value. Tuples in S which have no common

values in common attribute names with tuples in R also take a null value

https://en.wikipedia.org/wiki/Relation_(database)

Database Management Systems

Lohith B and Santosh H , Dept of CSE,CEC 32

2.8.5 The OUTER UNION Operation

 The OUTER UNION operation was developed to take the union of tuples from two

relations that have some common attributes, but are not union (type) compatible.

 This operation will take the UNION of tuples in two relations R(X, Y) and S(X,

Z)that are partially compatible, meaning that only some of their attributes, say X,

areunion compatible.

 Two tuples t1 in R and t2 in S are said to match if t1[X]=t2[X]. These will be

combined (unioned) into a single tuple in t. Tuples in either relation that have no

matching tuple in the other relation are padded with NULL values.

 For example, an OUTER UNION can be applied to two relations whose

schemas are STUDENT (Name, Ssn, Department, Advisor) and INSTRUCTOR

(Name, Ssn, Department, Rank). Tuples from the two relations are matched based

on having the same combination of values of the shared attributes—Name, Ssn,

Department. The resulting relation, STUDENT_OR_INSTRUCTOR, will have the

following attributes:

 STUDENT_OR_INSTRUCTOR (Name, Ssn, Department, Advisor, Rank)

 All the tuples from both relations are included in the result, but tuples with the same

(Name, Ssn, Department) combination will appear only once in the result. Tuples

appearing only in STUDENT will have a NULL for the Rank attribute, whereas tuples

appearing only in INSTRUCTOR will have a NULL for the Advisor attribute. A tuple that

exists in both relations, which represent a student who is also an instructor, will have

values for all its attributes.

2.9 Examples of Queries in Relational Algebra

Query 1. Retrieve the name and address of all employees who work for the ‘Research’

department.

Database Management Systems

Lohith B and Santosh H , Dept of CSE,CEC 33

Query 2. For every project located in ‘Stafford’, list the project number, the controlling

department number, and the department manager’s last name, address, and birth date.

Query 3. Find the names of employees who work on all the projects controlled by

department number 5.

Query 4. Make a list of project numbers for projects that involve an employee whose

last name is ‘Smith’, either as a worker or as a manager of the department that controls

the project.

Query 5. List the names of all employees with two or more dependents.

Query 6. Retrieve the names of employees who have no dependents.

Query 7. List the names of managers who have at least one dependent.

Database Management Systems

Lohith B and Santosh H , Dept of CSE,CEC 34

Illustrate queries using the following new instances S3 of sailors,

R2 of Reserves and B1 of boats.

(Q1) Find the names of sailors who have reserved boat 103

sname(σbid=103(Reserves* Sailors))

Q2) Find the names of sailors who have reserved a red boat.

Sailres Sailors * Reserves

sname((σcolor=‘red’Boats) * Sailres)

(Q3) Find the colors of boats reserved by Lubber.

ResboatReserves * Boats

color(σsname=‘Lubber’(Sailors *Resboat))

(Q4) Find the names of Sailors who have reserved at least one boat

sname(Sailors * Reserves)

Database Management Systems

Lohith B and Santosh H , Dept of CSE,CEC 35

(Q5) Find the names of sailors who have reserved a red or a green boat.

Tempboats (σcolor=‘red’Boats) ∪ (σcolor=‘green’Boats))

sname(Tempboats*Reserves*Sailors)

Q6) Find the names of Sailors who have reserved a red and a green boat.

Tempredsid(σcolor=‘red’(Boats* Reserves))

Tempgreensid(σcolor=‘green’(Boats * Reserves))

sname ((Tempred ∩ Tempgreen) *Sailors)

Q7) Find the sids of sailors with age over 20 who have not reserved

sailortwentysid(σage>20Sailors)

Result sailortwenty - sailredboat

(Q8) Find the names of sailors who have reserved all boats.

Tempsids (sid,bidReserves) ÷ (bidBoats))

Resultsname(Tempsids*Sailors)

(Q9) Find the names of sailors who have reserved all boats called Interlake.

Tempsids (sid,bidReserves) ÷ (bid(σbname=‘Interlake’Boats))

Result sname(Tempsids* Sailors)

Database Management Systems

Lohith B and Santosh, Asst Prof, Dept of CEC,CEC Page 1

2.10 LOGICAL DATABASE DESIGN: ER TO RELATIONAL

The ER model is convenient for representing an initial, high level database design. The

following steps show how to translate an ER diagram into a collection of tables with

associated constraints.

1. Entity Sets to Tables.

 An entity set is mapped to a relation in a straightforward way: Each attribute of the

entity set becomes an attribute of the table.

 Steps to convert Entity Sets to Tables.

1. Create a table for the entity set.

2. Make each attribute of the entity set a field of the table, with an appropriate

data type.

3. Declare the field or fields comprising the primary key

 Consider the Employees entity set with attributes ssn, name, and lot.

2. Relationship Sets (without Constraints) to Tables.

 A relationship set, like an entity set, is mapped to a relation in the relational model.

 To represent a relationship, we must be able to identify each participating entity and

give values to the attributes of the relationship.

Steps to convert Relationship sets to tables

1. Create a table for the relationship set.

2. Add all primary keys of the participating entity sets as fields of the table.

Database Management Systems

Lohith B and Santosh, Asst Prof, Dept of CEC,CEC Page 2

3. Add a field for each attribute of the relationship.

4. Declare a primary key using all key fields from the entity sets.

5. Declare foreign key constraints for all these fields from the entity sets.

 Consider the Works_In2 relationship set shown in Figure 3.10. Each department has

offices in several locations and we want to record the locations at which each

employee works

 All the available information about the Works-ln2 table is captured by the following

SQL definition:

 The address, did. and ssn fields cannot take on null values. Because these fields are

part of the primary key for Works_In2, a NOT NULL constraint is implicit for each

of these fields. This constraint ensures that these fields uniquely identify a

department, an employee, and a location in each tuple of Works_In.

3. Translating Relationship Sets with Key Constraints.

 If a relationship set involves n entity sets and some m of them are linked via arrows in

the ER diagram, the key of these m entity sets constitutes a key for the relation to

Database Management Systems

Lohith B and Santosh, Asst Prof, Dept of CEC,CEC Page 3

which the relationship set is mapped. Hence we have m candidate keys, and one of

these should be designated as the primary key.

 Consider the relationship set Manages. The table corresponding to Manages has the

attributes ssn, did, since. However, because each department has at most one

manager, no two tuples can have the same did value but differ on the ssn value. A

consequence of this observation is that did is itself a key for Manages; indeed, the set

did, ssn is not a key (because it is not minimal).

 The Manages relation can be defined using the following SQL statement:

Steps to translate Translating Relationship Sets with Key Constraints to tables.

1. Create a table for the relationship set.

2. Add all primary keys of the participating entity sets as fields of the table.

3. Add a field for each attribute of the relationship.

4. Declare a primary key using the key fields from the source entity set only.

5. Declare foreign key constraints for all the fields from the source and target

entity sets.

 The following SQL statement, defining a Dept_Mgr relation that captures the

information in both Departments and Manages, illustrates the second approach to

Database Management Systems

Lohith B and Santosh, Asst Prof, Dept of CEC,CEC Page 4

translating relationship sets with key constraints. The only drawback to this approach

is that space could be wasted if several departments have no managers. In this case the

added fields would have to be filled with null values

4. Translating Relationship Sets with Participation Constraints.

 Consider the ER diagram in Figure 3.13, which shows two relationship sets, Manages

and "Works_In. Every department is required to have a manager, due to the

participation constraint, and at most one manager, due to the key constraint.

Steps to translate relationship sets with participation constraints

1. Create a table for the source and target entity sets as usual.

2. Add every primary key field of the target as a field in the source.

Database Management Systems

Lohith B and Santosh, Asst Prof, Dept of CEC,CEC Page 5

3. Declare these fields as not null.

4. Declare these fields as foreign keys.

 According to participation constraint every department must have a manager: because

ssn cannot take on null values, each tuple of Dept_Mgr identifies a tuple in

Employees (who is the manager).

 The NO ACTION specification, which is the default and need not be explicitly

specified, ensures that an Employees tuple cannot be deleted while it is pointed to by

a Dept_Mgr tuple. If we wish to delete such an Employees tuple, we must first change

the Dept_Mgr tuple to have a new employee as manager.

5 Translating Weak Entity Sets

 A weak entity set always participates in a one-to-many binary relationship and has a

key constraint and total participation.

 The weak entity has only a partial key, when an owner entity is deleted, all the weak

entities should be deleted.

 Consider the Dependents weak entity set shown in Figure 3.14, with partial key

pname. A Dependents entity can be identified uniquely by the key of the owning

Employees entity and the pname of the Dependents entity, and the Dependents entity

must be deleted if the owning Employees entity is deleted.

Database Management Systems

Lohith B and Santosh, Asst Prof, Dept of CEC,CEC Page 6

Steps to translate weak entity set to tables.

1. Create a table for the weak entity set.

2. Make each attribute of the weak entity set a field of the table.

3. Add fields for the primary key attributes of the identifying owner.

4. Declare a foreign key constraint on these identifying owner fields.

5. Instruct the system to automatically delete any tuples in the table for which

there are no owners.

 The primary key is (pname, ssn), since Dependents is a weak entity. The value of

‘ssn’ cannot be null because the Dependents entity is associated with an Employees

entity (the owner), as per the total participation constraint on Dependents.

 The ON DELETE CASCADE option ensures that information about an employee's

policy and dependents is deleted if the corresponding Employees tuple is deleted.

6 Translating class Hierarchies.

 The two basic approaches to handle hierarchies by applying them to the ER diagram

are:

Database Management Systems

Lohith B and Santosh, Asst Prof, Dept of CEC,CEC Page 7

 Map each entity sets Employees, Hourly_Emps, and Contract_Emps to a distinct

relation. The relation for Hourly_Emps includes the hourly_wages and hours_worked

attributes of Hourly_Emps. It also contains the key attributes of the superclass (ssn, in

this example), which serve as the primary key for Hourly_Emps, as well as a foreign

key referencing the superclass (Employees). For each Hourly_Emps entity, the value

of the name and lot attributes are stored in the corresponding row of the superclass

(Employees).

 Note that if the superclass tuple is deleted, the delete must be cascaded to

Hourly_Emps.

 Alternatively, two relations can be created, corresponding to Hourly_Emps and

ContractEmps. The relation for Hourly_mps includes all the attributes of

Hourly_Emps as well as all the attributes of Employees (i.e., ssn, name, lot, hourly_

wages, hours_worked:).

7 Translating ER Diagrams with Aggregation

 The Employees, Projects, and Departments entity sets and the Sponsors relationship

set are mapped to relations. For the Monitors relationship set, we create a relation

Database Management Systems

Lohith B and Santosh, Asst Prof, Dept of CEC,CEC Page 8

with the following attributes: the key attributes of Employees (ssn), the key attributes

of Sponsors (did, pid), and the descriptive attributes of Monitors (until).

 Consider the Sponsors relation. It has attributes pid, did, and since; and in general we

need it (in addition to Monitors) for two reasons:

1. Record the descriptive attributes (since) of the Sponsors relationship.

2. Not every sponsorship has a monitor, and thus some (pid, did) pairs in the

Sponsors relation may not appear in the Monitors relation.

2.11 Basic SQL

 2.11.1 SQL Data Definition and Data Types

 1 Schema in SQL

 Schema elements include tables, constraints, views, domains, and other

constructs (such as authorization grants) that describe the schema.

 A schema is created via the CREATE SCHEMA statement, which can include

all the schema elements’ definitions.

For example, the following statement creates a schema called COMPANY,

owned by the user with authorization identifier ‘Jsmith’.

 CREATE SCHEMA COMPANY AUTHORIZATION ‘Jsmith’;

 2 The CREATE TABLE Command in SQL

 The CREATE TABLE command is used to specify a new relation by giving

it a name and specifying its attributes and initial constraints.

 The attributes are specified first, and each attribute is given a name, a data

type to specify its domain of values, and any attribute constraints, such as

NOT NULL.

 The key, entity integrity, and referential integrity constraints can be specified

within the CREATE TABLE statement after the attributes are declared, or

they can be added later using the ALTER TABLE command.

CREATE TABLE COMPANY.EMPLOYEE

rather than

CREATE TABLE EMPLOYEE

Database Management Systems

Lohith B and Santosh, Asst Prof, Dept of CEC,CEC Page 9

 3 Attribute Data Types and Domains in SQL

1. Numeric :

 The data types include integer numbers of various sizes INTEGER or INT,

and SMALLINT

 Floating-point numbers of various precision FLOAT or REAL.

 Formatted numbers can be declared by using DECIMAL(i,j)—or DEC(i,j) or

NUMERIC(i,j)—where i, the precision, is the total number of decimal digits

and j, the scale, is the number of digits after the decimal point.

2. Character-string

 The data types with fixed length characters—CHAR(n) or CHARACTER(n),

where n is the number of characters

 The data types with varying length characters VARCHAR(n) or CHAR

VARYING(n) or CHARACTER VARYING(n), where n is the maximum

number of characters.

 For example, if the value ‘Smith’ is for an attribute of type CHAR(10), it is

padded with five blank characters to become ‘Smith ’ if needed. Padded

blanks are generally ignored when strings are compared.

 Another variable-length string data type called CHARACTER LARGE

OBJECT or CLOB is also available to specify columns that have large text

values, such as documents. The CLOB maximum length can be specified in

kilobytes (K), megabytes (M), or gigabytes (G). For example, CLOB(20M)

specifies a maximum length of 20 megabytes

 3. Bit-string

 The data types of fixed length n is BIT(n).

 The varying length is BIT VARYING(n), where n is the maximum

number of bits.

 Literal bit strings are placed between single quotes but preceded by a B to

distinguish them from character strings; for example, B‘10101’.

 Another variable-length bitstring data type called BINARY LARGE

OBJECT or BLOB is also available to specify columns that have large

binary values, such as images

Database Management Systems

Lohith B and Santosh, Asst Prof, Dept of CEC,CEC Page 10

4. Boolean

The data type has the traditional values of TRUE or FALSE. In SQL, because

of the presence of NULL values, a three-valued logic is used, so a third

possible value for a Boolean data type is UNKNOWN.

5. DATE

 The data type has ten positions, and its components are YEAR, MONTH,

and DAY in the form YYYY-MM-DD.

 The TIME data type has at least eight positions, with the components

HOUR, MINUTE, and SECOND in the form HH:MM:SS. for example,

DATE ‘2008-09- 27’ or TIME ‘09:12:47’

6. Timestamp

 The data type (TIMESTAMP) includes the DATE and TIME fields,

 Example, TIMESTAMP ‘2008-09-27 09:12:47.648302’.

2.11.2 Specifying Constraints in SQL

 1 Specifying Attribute Constraints and Attribute Defaults

 SQL allows NULLs as attribute values, a constraint NOT NULL may be specified

if NULL is not permitted for a particular attribute.

 It is also possible to define a default value for an attribute by appending the clause

DEFAULT <value> to an attribute definition.

 Example: Mgr_ssn CHAR (9) NOT NULL DEFAULT ‘888665555’,

 The default value is included in any new tuple if an explicit value is not provided

for that attribute.

 If no default clause is specified, the default default value is NULL for attributes

that do not have the NOT NULL constraint.

 Another type of constraint that can restrict attribute or domain values is by using

the CHECK clause following an attribute or domain definition.

 For example, suppose that department numbers are restricted to integer

numbers between 1 and 20; then, we can change the attribute declaration of

Dnumber in the DEPARTMENT table to the following:

 Dnumber INT NOT NULL CHECK (Dnumber > 0 AND Dnumber < 21);

Database Management Systems

Lohith B and Santosh, Asst Prof, Dept of CEC,CEC Page 11

 The CHECK clause can also be used in conjunction with the CREATE

DOMAIN statement.For example,

CREATE DOMAIN D_NUM AS INTEGER

CHECK (D_NUM > 0 AND D_NUM < 21);

2 Specifying Key and Referential Integrity Constraints

 The PRIMARY KEY constraint uniquely identifies each record in a database

table. Primary keys must contain unique values, and cannot contain NULL values.

A table can have only one primary key, which may consist of single or multiple

fields.

For example, the primary key of DEPARTMENT can be specified as

Dnumber INT PRIMARY KEY;

 The UNIQUE clause specifies alternate (secondary) keys, The UNIQUE

constraint ensures that all values in a column are different. Both the UNIQUE and

PRIMARY KEY constraints are similar .A table can have many UNIQUE

constraints , but only one PRIMARY KEY constraint per table.

 The UNIQUE clause can also be specified directly for a secondary key if the

secondary key is a single attribute, as in the following example: Dname

VARCHAR(15) UNIQUE;

 Example:

CREATE TABLE DEPARTMENT

(

Dname VARCHAR(15) NOT NULL,

Dnumber INT NOT NULL,

Mgr_ssn CHAR(9) NOT NULL,

Mgr_start_date DATE,

PRIMARY KEY (Dnumber),

UNIQUE (Dname),

FOREIGN KEY (Mgr_ssn) REFERENCES

EMPLOYEE(Ssn)

);

Database Management Systems

Lohith B and Santosh, Asst Prof, Dept of CEC,CEC Page 12

 Referential integrity is specified via the FOREIGN KEY.

 A FOREIGN KEY is a key used to link two tables together. A FOREIGN KEY is

a field (or collection of fields) in one table that refers to the PRIMARY KEY in

another table. The table containing the foreign key is called the child table, and the

table containing the candidate key is called the referenced or parent table.

 A referential integrity constraint can be violated when tuples are inserted or

deleted, or when a foreign key or primary key attribute value is modified.

 The default action that SQL takes for an integrity violation is to reject the update

operation that will cause a violation, which is known as the RESTRICT option.

 The schema designer can specify an alternative action to be taken by attaching a

referential triggered action clause to any foreign key constraint. The options

include SET NULL, CASCADE, and SET DEFAULT. An option must be

qualified with either ON DELETE or ON UPDATE.

FOREIGN KEY (Super_ssn) REFERENCES EMPLOYEE(Ssn) ON

DELETE SET NULL ON UPDATE CASCADE.

 The database designer chooses ON DELETE SET NULL and ON UPDATE

CASCADE for the foreign key Super_ssn of EMPLOYEE. This means that if the

tuple for a supervising employee is deleted, the value of Super_ssn is

automatically set to NULL for all employee tuples that were referencing the

deleted employee tuple.

 On the other hand, if the Ssn value for a supervising employee is updated the new

value is cascaded to Super_ssn for all employee tuples referencing the updated

employee tuple.

 In general, the action taken by the DBMS for SET NULL or SET DEFAULT is

the same for both ON DELETE and ON UPDATE: The value of the affected

referencing attributes is changed to NULL for SET NULL and to the specified

default value of the referencing attribute for SET DEFAULT. The action for

CASCADE ON DELETE is to delete all the referencing tuples, whereas the action

for CASCADE ON UPDATE is to change the value of the referencing foreign key

attribute(s) to the updated (new) primary key value for all the referencing tuples.

Database Management Systems

Lohith B and Santosh, Asst Prof, Dept of CEC,CEC Page 13

3 Giving Names to Constraints

 Constraint may be given a constraint name, following the keyword

CONSTRAINT.

 The names of all constraints within a particular schema must be unique.

 A constraint name is used to identify a particular constraint in case the constraint

must be dropped later and replaced with another constraint,

 Example: CONSTRAINT DEPTMGRFK FOREIGN KEY (Mgr_ssn)

 REFERENCES EMPLOYEE (Ssn)

 DEPTMGRFK is a constraint name

4 Specifying Constraints on Tuples Using CHECK

 Constraints can be specified through additional CHECK clauses at the end of a

CREATE TABLE statement.

 These can be called tuple-based constraints because they apply to each tuple

individually and are checked whenever a tuple is inserted or modified.

For example, suppose that the DEPARTMENT table has additional

attribute Dept_create_date, which stores the date when the department was created.

Then we could add the following CHECK clause at the end of the CREATE

TABLE statement for the DEPARTMENT table to make sure that a manager’s

start date is later than the department creation date.

CHECK (Dept_create_date <= Mgr_start_date);

Database Management Systems

Lohith B and Santosh, Asst Prof, Dept of CEC,CEC Page 14

Note : SQL Comparison Operators

Database Management Systems

Lohith B and Santosh, Asst Prof, Dept of CEC,CEC Page 15

Note : SQL Logical Operators

Database Management Systems

Lohith B and Santosh, Asst Prof, Dept of CEC,CEC Page 16

2.12 Basic Retrieval Queries in SQL

 1 The SELECT-FROM-WHERE Structure of Basic SQL Queries

 The basic form of the SELECT statement is formed of the three clauses SELECT,

FROM, and WHERE .

SELECT <Attribute list>

FROM <Table list>

WHERE <Condition>;

 where

<Attribute list> is a list of attribute names whose values are to be retrieved by the

query.

<Table list> is a list of the relation names required to process the query.

<Condition> is a conditional (Boolean) expression that identifies the tuples to be

retrieved by the query.

Database Management Systems

Lohith B and Santosh, Asst Prof, Dept of CEC,CEC Page 17

 In SQL, the basic logical comparison operators for comparing attribute values

with one another and with literal constants are =, <, <=, >, >=, and <>. These

correspond to the relational algebra operators =, <, ≤, >, ≥, and ≠, respectively,

Database Management Systems

Lohith B and Santosh, Asst Prof, Dept of CEC,CEC Page 18

Query 1. Retrieve the birth date and address of the employee(s) whose name is

‘John B. Smith’.

 SELECT Bdate, Addres FROM EMPLOYEE

 WHERE Fname=‘John’ AND Minit=‘B’ AND Lname=‘Smith’;

Query 2. Retrieve the name and address of all employees who work for the

‘Research’ department.

 SELECT Fname, Lname, Address FROM EMPLOYEE, DEPARTMENT

 WHERE Dname=‘Research’ AND Dnumber=Dno;

Query 3. For every project located in ‘Stafford’, list the project number, the

controlling department number, and the department manager’s last name,

address, and birth date.

SELECT Pnumber, Dnum, Lname, Address, Bdate

FROM PROJECT, DEPARTMENT, EMPLOYEE

WHERE num=Dnumber AND Mgr_ssn=Ssn AND Plocation=‘Stafford’;

2 Ambiguous Attribute Names, Aliasing, Renaming, and Tuple Variables

 In SQL, the same name can be used for two (or more) attributes as long as the

attributes are in different relations.

Database Management Systems

Lohith B and Santosh, Asst Prof, Dept of CEC,CEC Page 19

 When a multitable query refers to two or more attributes with the same name, we

must qualify the attribute name with the relation name to prevent ambiguity.

 This is done by prefixing the relation name to the attribute name and separating

the two by a period.

 To illustrate consider the Dno and Lname attributes of the EMPLOYEE relation

were called Dnumber and Name, and the Dname attribute of DEPARTMENT was

also called Name; then, to prevent ambiguity we need to prefix the attribute with

relation name.

 SELECT Fname, EMPLOYEE.Name, Address

 FROM EMPLOYEE, DEPARTMENT

 WHERE DEPARTMENT.Name=‘Research’ AND

DEPARTMENT.Dnumber = EMPLOYEE.Dnumber;

 For each employee, retrieve the employee’s first and last name and the first and

last name of his or her immediate supervisor.

SELECT E.Fname, E.Lname, S.Fname, S.Lname

FROM EMPLOYEE AS E, EMPLOYEE AS S

WHERE E.Super_ssn=S.Ssn;

3 Unspecified WHERE Clause and Use of the Asterisk.

 A missing WHERE clause indicates no condition on tuple selection; hence, all

tuples of the relation specified in the FROM clause qualify and are selected for the

query result. If more than one relation is specified in the FROM clause and there

is no WHERE clause, then the CROSS PRODUCT all possible tuple

combinations of these relations is selected.

Database Management Systems

Lohith B and Santosh, Asst Prof, Dept of CEC,CEC Page 20

 For example, Query 9 selects all EMPLOYEE Ssns (Figure 4.3(e)), and Query

10 selects all combinations of an EMPLOYEE Ssn and a DEPARTMENT

Dname, regardless of whether the employee works for the department or not

 (Q9) SELECT Ssn FROM EMPLOYEE;

 (Q10) SELECT Ssn, Dname FROM EMPLOYEE, DEPARTMENT;

 To retrieve all the attribute values of the selected tuples, we do not have to list the

attribute names explicitly in SQL; we just specify an asterisk (*), which stands for

all the attributes. For example, query Q1C retrieves all the attribute values of

any EMPLOYEE who works in DEPARTMENT number 5.

Q1C: SELECT * FROM EMPLOYEE

WHERE Dno=5;

4 Tables as Sets in SQL

 SQL usually treats a table not as a set but rather as a multiset, duplicate tuples can

appear more than once in a table, and in the result of a query.

 SQL does not automatically eliminate duplicate tuples in the results of queries, for

the following reasons:

1. Duplicate elimination is an expensive operation. One way to implement it

is to sort the tuples first and then eliminate duplicates.

2. The user may want to see duplicate tuples in the result of a query.

3. When an aggregate function is applied to tuples, in most cases we do not

want to eliminate duplicates.

 To eliminate duplicate tuples from the result of an SQL query, we use the

keyword DISTINCT in the SELECT clause, meaning that only distinct tuples

should remain in the result.

Database Management Systems

Lohith B and Santosh, Asst Prof, Dept of CEC,CEC Page 21

 In general, a query with SELECT DISTINCT eliminates duplicates, whereas a

query with SELECT ALL does not. Do not specify SELECT with neither ALL

nor DISTINCT as in our previous examples is equivalent to SELECT ALL.

 For example, Q11 retrieves the salary of every employee; if several

employees have the same salary, that salary value will appear as many times in

the result of the query,

 Q11: SELECT ALL Salary FROM EMPLOYEE;

Query 11. Retrieve the salary of every employee (Q11) and all distinct salary

values (Q11A).

 Q11A: SELECT DISTINCT Salary FROM EMPLOYEE;

 SQL has some of the set operations, They are set union (UNION), set difference

(EXCEPT), and set intersection (INTERSECT) operations.

 The relations resulting from these set operations are sets of tuples; that is,

duplicate tuples are eliminated from the result.

Query 4. Make a list of all project numbers for projects that involve an employee

whose last name is ‘Smith’, either as a worker or as a manager of the department

that controls the project.

(SELECT DISTINCT Pnumber

FROM PROJECT, DEPARTMENT, EMPLOYEE

WHERE Dnum=Dnumber AND Mgr_ssn=Ssn AND Lname=‘Smith’

) UNION (

SELECT DISTINCT Pnumber

FROM PROJECT, WORKS_ON, EMPLOYEE

WHERE Pnumber=Pno AND Essn=Ssn AND Lname=‘Smith’

);

Database Management Systems

Lohith B and Santosh, Asst Prof, Dept of CEC,CEC Page 22

 SQL also has corresponding multiset operations, which are followed by the

keyword ALL (UNION ALL, EXCEPT ALL, INTERSECT ALL). Their results

are multisets (duplicates are not eliminated).

 The behavior of these operations is illustrated by the examples in Figure 4.5.

5 Substring Pattern Matching and Arithmetic Operators

 The LIKE operator is used in a WHERE clause to search for a specified pattern in a

column.

 There are two wildcards used in conjunction with the LIKE operator:

1. % The percent sign represents zero, one, or multiple characters

2. _ The underscore represents a single character.

 Query 12. Retrieve all employees whose address is in Houston, Texas.

SELECT Fname, Lname

FROM EMPLOYEE

WHERE Address LIKE ‘%Houston,TX%’ ;

 Query 12A. Find all employees who were born during the 1950s.

SELECT Fname, Lname

FROM EMPLOYEE

WHERE Bdate LIKE ‘_ _ 5 _ _ _ _ _ _ _’ ;

Database Management Systems

Lohith B and Santosh, Asst Prof, Dept of CEC,CEC Page 23

 If an underscore or % is needed as a literal character in the string, the character should

be preceded by an escape character(‘\’), which is specified after the string . For

example, ‘AB_CD\%EF’ is used to represent the literal string ‘AB_CD%EF’ .

 The standard arithmetic operators for addition (+), subtraction (–), multiplication (*),

and division (/) can be applied to numeric values or attributes with numeric domains.

For example, suppose that we want to see the effect of giving all employees who work

on the ‘ProductX’ project a 10 percent raise;

Query 13. Show the resulting salaries if every employee working on the

‘ProductX’ project is given a 10 percent raise.

SELECT E.Fname, E.Lname, 1.1 * E.Salary AS Increased_sal

FROM EMPLOYEE AS E, WORKS_ON AS W, PROJECT AS P

WHERE E.Ssn=W.Essn AND W.Pno=P.Pnumber AND P.Pname=‘ProductX’;

Query 14. Retrieve all employees in department 5 whose salary is between

$30,000 and $40,000.

SELECT * FROM EMPLOYEE

WHERE (Salary BETWEEN 30000 AND 40000) AND Dno = 5;

6 Ordering of Query Results

 The ORDER BY keyword is used to sort the result-set in ascending or descending

order.

 The ORDER BY keyword sorts the records in ascending order by default. To sort the

records in descending order, use the DESC keyword. The keyword ASC can be used

to specify ascending order.

Query 15. Retrieve a list of employees and the projects they are working on,

ordered by department and, within each department, ordered alphabetically

by last name, then first name.

SELECT D.Dname, E.Lname, E.Fname, P.Pname

FROM DEPARTMENT D, EMPLOYEE E, WORKS_ON W, PROJECT P

WHERE D.Dnumber= E.Dno AND E.Ssn= W.Essn AND W.Pno= P.Pnumber

ORDER BY D.Dname, E.Lname, E.Fname;

Database Management Systems

Lohith B and Santosh, Asst Prof, Dept of CEC,CEC Page 24

7 Discussion and Summary of Basic SQL Retrieval Queries.

 A simple retrieval query in SQL can consist of up to four clauses, but only the first

two SELECT and FROM—are mandatory. The clauses are specified in the following

order, with the clauses between square brackets [...] being optional:

SELECT <attribute list>

FROM <table list>

[WHERE <condition>]

[ORDER BY <attribute list>];

2.13 INSERT, DELETE, and UPDATE Statements in SQL

 In SQL, three commands can be used to modify the database: INSERT, DELETE,

and UPDATE.

1 The INSERT Command

 INSERT is used to add a single tuple to a relation. We must specify the relation name

and a list of values for the tuple.

 While adding values for all the columns of the table, need not specify the column

names in the SQL query The values should be listed in the same order in which the

corresponding attributes were specified in the CREATE TABLE command.

 The INSERT INTO syntax would be as follows:

INSERT INTO table_name VALUES (value1, value2, value3, ...);

For example, to add a new tuple to the EMPLOYEE relation shown.

INSERT INTO EMPLOYEE VALUES (‘Richard’, ‘K’, ‘Marini’, ‘653298653’,

‘1962-12-30’, ’98 Oak Forest, Katy, TX’, ‘M’, 37000, ‘653298653’, 4);

 The second form of the INSERT statement allows the user to specify explicit attribute

names that correspond to the values provided in the INSERT command.

 For example, to enter a tuple for a new EMPLOYEE for whom we know

only the Fname, Lname, Dno, and Ssn attributes.

Database Management Systems

Lohith B and Santosh, Asst Prof, Dept of CEC,CEC Page 25

INSERT INTO table_name (column1, column2, column3,...)VALUES (value1,

value2, value3, ...);

Example:

INSERT INTO EMPLOYEE (Fname, Lname, Dno, Ssn) VALUES (‘Richard’,

‘Marini’, 4, ‘653298653’);

2 The DELETE Command

 The DELETE command removes tuples from a relation. The WHERE clause, selects

the tuples to be deleted. Tuples are explicitly deleted from only one table at a time.

 The deletion propagates to tuples in other relations if referential triggered actions(on

delete cascade) are specified in the referential integrity constraints of the DDL.

 A missing WHERE clause specifies that all tuples in the relation are to be deleted;

however, the table remains in the database as an empty table. The DROP TABLE

command to remove the table definition.

 Example1:

DELETE FROM EMPLOYEE

WHERE Lname=‘Brown’;

 Example 2

 DELETE FROM EMPLOYEE

3 The UPDATE Command

 The UPDATE command is used to modify attribute values of one or more selected

Tuples, the WHERE clause in the UPDATE command selects the tuples to be

modified from a single relation.

 Updating a primary key value may propagate to the foreign key values of tuples in

other relations if such a referential triggered action(on update cascade) is specified

in the referential integrity constraints of the DDL.

 An additional SET clause in the UPDATE command specifies the attributes to be

modified and their new values.

Database Management Systems

Lohith B and Santosh, Asst Prof, Dept of CEC,CEC Page 26

For example, to change the location and controlling department

number of project number 10 to ‘Bellaire’ and 5, respectively.

UPDATE PROJECT

SET Plocation = ‘Bellaire’, Dnum = 5

WHERE Pnumber=10;

 Several tuples can be modified with a single UPDATE command.

An example is to give all employees in the ‘Research’ department a 10

percent raise in salary.

UPDATE EMPLOYEE

SET Salary = Salary * 1.1

WHERE Dno = 5;

2.14 Additional Features of SQL

 SQL has various techniques for specifying complex retrieval queries, including nested

queries, aggregate functions, grouping, joined tables, outer joins, and recursive

queries; SQL views, triggers, and assertions; and commands for schema modification.

 SQL has various techniques for writing programs in various programming languages

that include SQL statements to access one or more databases. These include

embedded (and dynamic) SQL, SQL/CLI (Call Level Interface) and its predecessor

ODBC (Open Data Base Connectivity), and SQL/PSM (Persistent Stored Modules)..

 SQL has set of commands for specifying physical database design parameters, file

structures for relations, and access paths such as indexes. We called these commands

a storage definition language (SDL).

 SQL has transaction control commands. These are used to specify units of database

processing for concurrency control and recovery purposes.

 SQL has language constructs for specifying the granting and revoking of privileges to

users. Privileges typically correspond to the right to use certain SQL commands to

access certain relations. Each relation is assigned an owner, and either the owner or

the DBA staff can grant to selected users the privilege to use an SQL statement—such

as SELECT, INSERT, DELETE, or UPDATE—to access the relation. In addition, the

DBA staff can grant the privileges to create schemas, tables, or views to certain users.

These SQL commands—called GRANT and REVOKE.

Database Management Systems

Lohith B and Santosh, Asst Prof, Dept of CEC,CEC Page 27

 SQL has language constructs for creating triggers. These are generally referred to as

active database techniques, since they specify actions that are automatically triggered

by events such as database updates.

 SQL has incorporated many features from object-oriented models to have more

powerful capabilities, leading to enhanced relational systems known as object-

relational.

 SQL and relational databases can interact with new technologies such as XML.

2.15 References:

Text Books

1. Fundamentals of Database System, Elmasri and Navathe , 7th edition.

2. Database Management System, Raghu Ramakrishnan and Johannes Gehrke, 3rd

edition.

Web Resource

1. https://www.geeksforgeeks.org/introduction-of-er-model/

2. https://beginnersbook.com/2015/04/e-r-model-in-dbms/

3. https://www.tutorialspoint.com/dbms/er_model_basic_concepts.htm

4. https://www.gatevidyalay.com/relationship-sets/

5. https://tutorialwing.com/mapping-constraints-in-dbms-for-relationship-types/

	 The JOIN operation, denoted by , is used to combine related tuples from two relations into single “longer” tuples.
	To illustrate JOIN, suppose that we want to retrieve the nameof the manager of each department. To get the manager’s name, we need to combine each department tuple with the employee tuple whose Ssn value matches the Mgr_ssn value in the departm...

