

 Page No. 1

CANARA ENGINEERING COLLEGE
Benjanapadavu – 574219

Program: COMPUTER SCIENCE & ENGINEERING Course code:18CS53
Course Name: DATABASE MANAGEMENT SYSTEM

MODULE 3

Notes prepared by - (Name & Designation) : Mr.LOHIT B and Mr.SANTOSH

OBJECTIVE: Design and build database applications for real world problems

OUTCOME: Develop application to interact with databases using JDBC and advanced Queries..

Contents include:

No. of Weblinks: 3

No. of University Qs and As: 10

Structure of Notes

3.1 MORE COMPLEX SQL QUERIES (VTU Question)

3.2 SPECIFYING CONSTRAINTS AS ASSERTIONS AND ACTIONS AS TRIGGERS (VTU Question)

3.3 VIEWS (VIRTUAL TABLES) IN SQL(VTU Question)

3.4 SCHEMA CHANGE STATEMENTS IN SQL(VTU Question)

3.5 ACCESSING DATABASES FROM APPLICATIONS

3.6 AN INTRODUCTION TO JDBC. (VTU Question)

3.7 JDBC CLASSES AND INTERFACES. (VTU Question)

3.8 SQLJ

3.9 STORED PROCEDURE(VTU Question)

3.10 SQL/PSM

3.11 THE THREE-TIER APPLICATION ARCHITECTURE(VTU Question)

3.12 THE PRESENTATION LAYER. (VTU Question)

3.13 HE MIDDLE TIER . (VTU Question)

3.14 References

Mr.Lohith B and Mr.Santosh Dept of CSE, CEC Page 1

MODULE - 3

3.1 MORE COMPLEX SQL QUERIES

1. Comparisons Involving NULL and Three-Valued Logic:

 NULL is used to represent a missing value that usually has one of the 3 different interpretations.

o value unknown (exists but is not known or it is not known whether a value exists or
not),

o value not available (exists but is purposely withheld), or

o attribute not applicable (undefined for this tuple).

Examples:

 1. Unknown value: A particular person has a date of birth but it is not known, so it is

represented by NULL in the database.

2. Unavailable or withheld value: A person has a home phone but does not want it to be

listed, so it is withheld and represented as NULL in the database.

3. Not applicable attribute: An attribute LastCollegeDegree would be NULL for a person who

has no college degrees, because it does not apply to that person.

 SQL does not distinguish between the different meanings of NULL.

 In general, each NULL value is considered to be different from every other NULL value in the

database records.

 When a record with NULL is involved in a comparison operation, the result is considered to

be UNKNOWN (it may be TRUE or it may be FALSE). Hence, SQL uses a 3-valued logic

with values TRUE, FALSE and UNKNOWN.

 The results or truth values of three-valued logical expressions when the logical connectives

AND, OR and NOT are used are showed in the table below.
(a)

AND TRUE FALSE UNKNOWN

TRUE TRUE FALSE UNKNOWN

FALSE FALSE FALSE FALSE

UNKNOWN UNKNOWN FALSE UNKNOWN
(b)

OR TRUE FALSE UNKNOWN

TRUE TRUE TRUE TRUE

FALSE TRUE FALSE UNKNOWN

UNKNOWN TRUE UNKNOWN UNKNOWN

In (a) and (b), the rows and columns represent the values of the results of 2 three valued Boolean

expressions which would appear in the WHERE clause of an SQL query. Each expression result would

have a value of true, false, or unknown.

(c)

NOT

TRUE FALSE

FALSE TRUE

UNKNOWN UNKNOWN

Mr.Lohith B and Mr.Santosh Dept of CSE, CEC Page 2

 In select-project-join queries, the general rule is that only those combinations of tuples that evaluate

the logical expression of the query to TRUE are selected. Tuple combinations that evaluate to FALSE

or UNKNOWN are not selected. There are exceptions to that rule for certain operations such as outer

joins.

 SQL allows queries that check whether an attribute value is NULL.

 SQL uses the comparison operators IS or IS NOT to compare an attribute value to NULL. SQL

considers each NULL value as being distinct from every other NULL value, so equality comparison is

not appropriate. It follows that when a join condition is specified, tuples with NULL values for the join

attributes are not included in the result (unless it is an outer join).

Query 1: Retrieve the names of all employees who do not have supervisors.

SELECT Fname, Lname FROM EMPLOYEE

WHERE Super ssn IS NULL;

2. Nested Queries, Tuples, and Set / Multiset Comparisons:

 Some queries require that existing values in the database be fetched and then used in a comparison

condition.

 Nested queries are complete select-from-where blocks within another SQL query. That other query

is called the outer query. The nested queries can also appear in the WHERE clause of the FROM

clause or other SQL clauses as needed.

 The comparison operator IN compares a value v with a set (or multiset) of values V and evaluates to

TRUE if v is one of the elements in V.

Query 4A: Same as query 4.

SELECT DISTINCT Pnumber

FROM PROJECT

WHERE Pnumber IN

(SELECT Pnumber

FROM PROJECT, DEPARTMENT, EMPLOYEE

WHERE D n u m = D n u m b e r AND M g r s s n = S s n AND Ln a m e = ' S m i t h ')

OR

Pnumber IN

(SELECT Pno

FROM WORKS ON, EMPLOYEE

WHERE Essn=Ssn AND Lname='Smith');

Mr.Lohith B and Mr.Santosh Dept of CSE, CEC Page 3

 If a nested query returns a single attribute and a single tuple, the query result will be a single value.

In such cases, = can be used instead of IN for the comparison operator. In general, a nested query

will return a table (relation) which is a set or multiset of tuples.

 SQL allows the use of tuples of values in comparisons by placing them in parentheses. This is

illustrated in the query below.

Query 3:Retrieve the Ssns of all employee who work on the same (project, hours) combination

on some project that employee 'John Smith' whose Ssn is 123456789 works on.

SELECT D I ST IN CT E s sn

FROM WORKS ON

W HE R E (P n o , H o u r s) I N (SE L E C T P n o , H o u r s

FROM WORKS ON

W H E R E S s n = ' 1 2 3 4 5 6 7 8 9 ') ;

In this example, the IN operator compares the sub-tuple of values in parentheses (Pno, Hours) for

each tuple in WORKS_ON with the set of union compatible tuples produced by the nested query.

 A number of comparison operators can be used to compare a single value v (typically an

attribute name) to a set or multiset V (typically a nested query). The =ANY (or =SOME) operator

returns TRUE if the value v is equal to some value in the set :V and is hence equivalent to IN The

keywords ANY and SOME have same meaning. Operators that can be combined with ANY

include >, >= <, <— and < >. The keyword ALL can also be combined with each of these

operators. The comparison condition (v >ALL V) returns TRUE if value 'v is greater than all the

values in the set (or multiset) V.

 Query 4: Retrieve the names of employees whose salary is greater than the salary of all the

employees in department 5.

SELECT Ln a m e , Fn a m e

 FROM EMPLOYEE

W H E R E S a l a r y > A L L (S E L E C T S a l a r y

 FROM EMPLOYEE

 WHERE Dno = 5) ;

 If attributes of the same name exist, one in the FROM clause of the nested query and one in the

FROM clause of the outer query, then there arises ambiguity in attribute names. The rule is that the

reference to an unqualified attribute refers to the relation declared in the innermost nested query. It is

generally advisable to create tuple variables (aliases) for all the tables referenced in an SQL

query to avoid errors and ambiguities.

Mr.Lohith B and Santosh Page 4

Query 5: Retrieve the name of each employee who has a dependent with the same first name

and sex as the employee.

SELECT E . Ln a m e, E . Fn a m e

FROM EMPLOYEE AS E

WHERE E . S s n I N (SELECT E s s n

 FROM DEPENDENT

 WHERE E . F n a m e = D e p e n d e n t n a m e A N D E . S e x = S e x) ;

3. Correlated Nested Queries:

 Whenever a condition in the WHERE clause of a nested query references some attribute of a

relation declared in the outer query, the two queries are said to be correlated.

 For a correlated nested query, the nested query is evaluated once for each tuple (or

combination of tuples) in the outer query.

Example: In Query 5, for each EMPLOYEE tuple, evaluate the nested query, which retrieves the

Essn values for all DEPENDENT tuples with the same sex and name as that EMPLOYEE tuple; if the

SSN value of the EMPLOYEE tuple is in the result of the nested query, then select that EMPLOYEE

tuple.

In general, a query written with nested select-from-where blocks and using the = or IN comparison

operators can always be expressed as a single block query. The query below is another way of

solving Query 5.

SELECT E . Fn a m e, E . Ln a m e

FROM EMPLOYEE AS E, DEPENDENT AS D

WHERE E . Ssn =D.E ssn AND E . Sex=D. Sex

AN D E . F n a m e = D . D e p e n d e n t n a m e ;

4. The EXISTS and UNIQUE Functions in SQL:

 EXISTS and UNIQUE are Boolean functions that return TRUE or FALSE.

 They can be used in WHERE clause condition.

 The EXISTS function in SQL is used to check whether the result of a correlated

nested query is empty (contains no tuples) or not.

 The result of EXISTS is a Boolean value TRUE if the nested query result contains atleast one

tuple or FALSE if the nested query result contains no tuples.

 EXISTS and NOT EXISTS are typically used in conjunction with a correlated nested query.

 EXISTS (Q) returns TRUE if there is atleast one tuple in the result of the nested query

Q and returns FALSE otherwise.

 NOT EXISTS (Q) returns TRUE if there are no tuples in the result of the nested query

Q and returns FALSE otherwise.

Mr.Lohith B and Santosh Page 5

Query 5 can be written in an alternative form that uses EXISTS. The nested query

references the Ssn, Fname, and Sex attributes of the EMPLOYEE relation from the

outer query. For each employee tuple, evaluate the nested query which retrieves all

DEPENDENT tuples with the same Essn, Sex and Dependent_name as the employee

tuple; if atleast 1 tuple EXISTS in the result of the nested query, then select that

employee tuple.

SE L E C T E . F n a m e , E . L n a m e FROM EMPLOYEE AS E

WHERE EXISTS (SELECT * FROM DEPENDENT AS D

 WHE R E E . S s n = D . E s s n A N D E . S e x = D . S e x

A N D

E . F n a m e = D . D e p e n d e n t n a m e) ;

Query 6: Retrieve the names of employees who have no dependents.

SELECT FNAME, LNAME FROM EMPLOYEE

WHERE N OT EX I ST S (SELE CT *FROM DEPENDENT

WHERE SSN=ESSN);

In this query, the correlated nested query retrieves all DEPENDENT tuples related to an

EMPLOYEE tuple. If none exist, the EMPLOYEE tuple is selected because the WHERE clause

condition will evaluate to TRUE in this case. For each employee tuple, the correlated nested

query selects all DEPENDENT tuples whose Essn value matches the EMPLOYEE Ssn; if the

result is empty, no dependents are related to the employee and so we select that employee tuple.

Query 7: List the names of managers who have atleast one dependent.

SELECT FNAME, LNAME

FROM EMPLOYEE

WHEREEXISTS (SELECT * FROM DEPENDENT

WHERE SSN=ESSN)

AND EXISTS (SELECT FROM DEPARTMENT

 WHERE S s n = M g r s s n) ;

Query 8: Retrieve the name of each employee who works on all the projects
controlled by department number 5.

SELECT Fna me, Lna me

FROM EMPLOYEE

WHERE N OT E X I ST S ((S E L E C T P n u m b e r F R OM P R O J E C T WHERE

D num= S)

 EXCEPT (SELECT Pno FROM WORKS ON WHERE Ssn=Essn)) ;

The first subquery (which is not correlated with the outer query) selects all projects controlled

bydepartment 5 and the second subquery (which is correlated with the outer query) selects all projects

that the particular employee being considered works on. If the set difference of the first subquery result

MINUS EXCEPT) the second subquery result is empty, it means that the employee works on all the projects

and is therefore selected.

Mr.Lohith B and Santosh Page 6

 The function UNIQUE (Q) returns TRUE if there are no duplicate tuples in the result of query Q;

otherwise it returns FALSE.

 The UNIQUE function can be used to test whether the result of a nested query is a set — no

duplicates or a multiset — duplicates exist.

5. Explicit sets and Renaming of Attributes in SQL:

 An explicit set of values can be used in the where clause rather than a nested query. Such a set is

enclosed in parentheses in SQL.

Query 8 : Retrieve the Essn of all employees who work on

project numbers 1, 2 or 3.

SELECT DISTINCT Essn FROM WORKS ON

WHERE Pno IN (1,2,3);

 In SQL, it is possible to rename any attribute that appears in the result of a query by adding the

AS qualifier followed by the desired new name.

 AS construct can be used to alias both attribute and relation names in general and it can be used in

appropriate parts of a query.

SELECT E.Lname AS Employee name, S.Lname AS

Supervisor name FROM EMPLOYEE AS E, EMPLOYEE AS

S

 WHERE E.Superssn=S.Ssn;

6. Joined Tables in SQL:

 The joined table (or joined relation) permits users to specify a table resulting from a join

operation in the FROM clause of a query. This construct avoids mixing together all the select

and join conditions in the WHERE clause.

Example: Consider query which retrieves the name and address of every employee who

works for the 'Research' department. First specify the join of the EMPLOYEE and DEPARTMENT

relations and then select the desired tuples and attributes. The FROM clause contains a single

joined table.

SELECT F n a m e , L n a m e , A d d r e s s FROM (EMPLOYEE JOIN

DEPARTMENT ON Dno=Dnumber) WHERE D n a m e = ' R e s e a r c h ' ;

The attributes of such a table are all the attributes of the first table EMPLOYEE

followed by all attributes of the second table DEPARTMENT.

 In a NATURAL JOIN on two relations R and S, no join condition is specified; an implicit

EQUIJOIN condition for each pair of attributes with the same name from R and S is created.

Each such pair of attributes is included only once in the resulting relation.

Mr.Lohith B and Santosh Page 7

 If the names of join attributes are not the same in base relations, rename the attributes so

that they match and then apply the NATURAL JOIN. The AS construct can be used to

rename a relation and all its attributes in the FROM clause.

Example: Here the DEPARTMENT relation is renamed as DEPT and its attributes are

renamed as Dname , Dno, Mssn and Msdate. The implied join condition for this natural join is

EMPLOYEE. Dno = DEPT. Dno because it is the only pair of attributes with the same name.

SELECT Fname, Lname, Address

FROM (EMPLOYEE NATURAL JOIN DEPARTMENT AS DEPT(Dname, Dno,

Mssn, Msdate) WHERE DNAME='Research';

 The default type of join in a joined table is an INNER JOIN where a tuple is included in the

result only if a matching tuple exists in the other relation. If every tuple should be included in

the result, OUTER JOIN must be explicitly specified.

Query 9: Retrieve the names of employees along with their

supervisor name and even if employee has no supervisor include

his/her name too.

SELECT E . Ln a m e A S E m p l oye e n a m e , S . Ln a m e A S Supervisor

name FROM (EMPLOYEE AS E LEFT OUTER JOIN EMPLOYEE AS S ON

E.Superssn=S.Ssn);

 The options available for specifying joined tables in SQL include —

 INNER JOIN — only pairs of tuples that match the join condition are retrieved, same as

JOIN.

 LEFT OUTER JOIN — every tuple in the left table must appear in the result. If it does

not have a matching tuple, it is padded with NULL values for the attributes of the right

table.

 RIGHT OUTER JOIN - every tuple in the right table must appear in the result. If it does

not have a matching tuple, it is padded with NULL values for the attributes of the left table.

 F U LL OUTER JOIN. The keyword OUTER may be omitted in LEFT OUTER JOIN or

 RIGHT OUTER JOIN or FULL OUTER JOIN.

 : • If the join attributes have the same name, we can specify the natural join variation of outer

joins by using the keyword NATURAL before the operation. Eg: NATURAL LEFT OUTER

JOIN.

 : * The keyword CROSS JO IN is used to specify CARTESIAN PRODUCT operation.

Mr.Lohith B and Santosh Page 8

 Join specifications can be nested where one of the tables in a join may itself be a joined table.

This allows the specification of the join of three or more tables as a single joined table which is

called a multiway join.

Example:

SELECT PNUMBER, DNUM, LNAME, BDATE, ADDRESS

FROM((PROJECT JOIN DEPARTMENT ON DNUM=DNUMBER) JOIN

EMPLOYEE ON MGRSSN=SSN)

WHERE PLOCATION='Stafford';

 Some SQL implementations have a different syntax to specify outer joins by using the comparison

operators += for left outer join, =+ for right outer join and +=+ for full outer join when specifying

the join condition.(Eg: Oracle uses this syntax)

Example:

SELECT E .Lname, S.Lname FROM

EMPLOYEE E, EMPLOYEE S W H E R E

E . S u p e r s s n + = S . S s n ;

7. Aggregate Functions in SQL:

 Aggregate functions are used to summarize information from multiple tuples into a single-tuple

summary.

 Grouping is used to create subgroups of tuples before summarization.

 SQL has built-in aggregate functions - COUNT, SUM, MAX, MIN and AVG.

 The COUNT function returns the number of tuples or values as specified in a query.

 The functions SUM, MAX, MIN and AVG are applied to a set or multiset of numeric values and

return the sum, the maximum value, the minimum value and the average of those values

respectively.

 These functions can be used in the SELECT clause or in a HAVING clause.

 The functions MAX and MIN can also be used with attributes that have nonnumeric

domains if the domain values have a total ordering among one another.

 NULL values are discarded when aggregate functions are applied to a particular

column (attribute). COUNT (*) counts tuples not values hence NULL values do not

affect it.

 When an aggregate function is applied to a collection of values, NULLs are removed from the

collection before the calculation. If the collection becomes empty because all values are NULL,

Mr.Lohith B and Santosh Page 9

the aggregate function will return NULL except COUNT which returns a 0 for an empty

collection of values.

 Aggregate functions can also be used in selection conditions involving nested queries. A

correlated nested query with an aggregate function can be specified and then used in the

WHERE clause of an outer query.

 SQL also has aggregate functions SOME and ALL that can be applied to a collection of Boolean

values. SOME returns TRUE if atleast one element in the collection is TRUE whereas ALL returns

TRUE if all elements in the collection are TRUE.

Query 10: Find the sum of salaries, maximum salary, the

minimum salary, and the average salary among all employees.

SELECT SUM(SALARY), MAX(SALARY), MIN(SALARY), AVG(SALARY)

 FROM EMPLOYEE;

 This query returns a single-row summary of all the rows in the EMPLOYEE table. We can

use the keyword AS to rename the column names in the resulting single-row table.

SELECT SUM(SALARY) AS Total_salary, MAX(SALARY) AS

Highest _salary, MIN(SALARY) AS Lowest salary,

AVG(SALARY)AS Average salary FROM EMPLOYEE;

Query11: Find the sum of the salaries, maximum salary, the

minimum salary, and the average salary among employees who work

for the 'Research' department.

SELECT SUM (SALARY) , MAX(SALARY), MIN(SALARY), AVG (SALARY)

FROM EMPLOYEE, DEPARTMENT

WHERE DNO=DNUMBER AND DNAME='Research';

 Query12: Retrieve the total number of employees in the company.

 SE L E C T C OU N T (*) FROM EMPLOYEE;

Query13: Retrieve the total number of employees in the 'Research'

department.

SELECT COUNT (*) FROM EMPLOYEE, DEPARTMENT

WHEREDNO=DNUMBER AND DNAME='Research';

Here the asterisk (*) refers to the rows (ttiples), so COUNT (*) returns the number of rows in

the result of the query. The COUNT function can also be used to count values in a column rather

than tuples.

Mr.Lohith B and Santosh Page 10

Query14 : Count the number of distinct salary values in the database.

SELECT CO UNT (DISTINCT S a l a r y) FROM EMPLOYEE;

COUNT (Salary) will not eliminate duplicate values of Salary. Any tuples with NULL for Salary will not

be counted.

Query 15: Retrieve the names of all employees who have two or more

dependents.

SELE CT L n a m e , F n a m e FROM EMPLOYEE

WHERE (SELECT COUNT (*) FROM DE PE NDE NT

WH ERE S s n = E s s n) > = 2 ;

The correlated nested query counts the number of dependents that each employee has. If the count is

greater than or equal to two, the employee tuple is selected.

8. Grouping: The GROUP BY and HAVING Clauses:

 The aggregate functions can be applied to subgroups of tuples in a relation where the subgroups

are based on some attribute values.

For e.g., to find the average salary of employees in each department, we need to partition

the relation into non-overlapping subsets (or groups) of tuples.

 Each group (or partition) will consist of tuples that have the same value of some attribute(s)

called the grouping attribute(s).The function is then applied to each subgroup

independently to produce summary information about each group.

 SQL has a GROUP BY-clause for specifying the grouping attributes. These attributes must also

appear in the SELECT- clause so that the value resulting from applying each aggregate function

to a group of tuples appears along with the value of the grouping attribute(s).

 If NULLs exist in the grouping attribute, then a separate group is created for all tuples with a

NULL value in the grouping attribute. Eg: If the EMPLOYEE tuple had NULL for the grouping

attribute Dno, there would be a separate group for those tuples in the result of Query 16.

 A join condition can be used in conjunction with grouping.

 To retrieve the values of aggregate functions for only those groups that satis.b, certain conditions,

SQL provides a HAVING clause which can appear in conjunction with a GROUP BY clause. The

HAVING clause is used for specifying a selection condition on groups (rather than on individual

tuples) of tuples associated with each value of the grouping attributes. HAVING provides a

condition on the summary information regarding the group of tuples associated with each value of

the grouping attributes. Only the groups that satisfy the condition are retrieved in the result of the

query.

Mr.Lohith B and Santosh Page 11

 • The selection conditions in the WHERE clause limit the tuples to which functions are applied

but the HAVING clause serves to choose whole groups.

Query 16: For each department, retrieve the department number, the

number of employees in the department, and their average salary.

SELECT D n o , C O U N T (*) , A V G (S a l a r y)

FROM EMPLOYEE GROUP B Y D n o ;

The EMPLOYEE tuples are divided into groups - each group having the same value for the

grouping attribute Dno. The COUNT and AVG functions are applied to each such group of

tuples separately. The SELECT clause includes only the grouping attribute and the functions

to be applied on each group of tuples.

Query 17: For each project, retrieve the project number, project name,

and the number of employees who work on that project.

SELECT P n um be r , Pn a m e, COUNT (*FROM PROJECT, WORKS ON

WHERE PNUMBER=PNO GROUP BY P n u m b e r , P n a m e ;

In this case, the grouping and functions are applied after the joining of the two relations.

Query 18 : For each project on which more than two employees work,

retrieve the project number, project name, and the number of employees

who work on that project.

SELECT P n u m b e r , P n a m e , C OU N T (*)

FROM PROJECT, WORKS ON WHERE Pn u m ber = Pn o

GR OU P BY P n u m b e r , P n a m e

HAVING C OU N T (*) > 2 ;

Query 19: For each project, retrieve the project number, the project

name and the number of employees from department 5 who work on the

project.

SELECT P n u m b e r , P n a m e , C OU N T (*)

FROM PROJECT, WORKS ON, EMPLOYEE

WHERE P n um be r = Pn o A N D S sn =E s sn A N D Dn o= 5

GROUP BY P n u m b e r , P n a m e ;

Query 20: For each department that has more than 5 employees,

retrieve the department number and the number of employees who are

making a salary more than $40,000.

SELECT Dno, COUNT(*) FROM EMPLOYEE

Mr.Lohith B and Santosh Page 12

 WHERE S a l a r y > 4 0 0 0 0 A N D D n o IN(SELECT D n o

 FROM EMPLOYEE GROUP BY Dno HAVING COUNT(*)>5)

 GROUP BY Dno;

9. SQL Constructs: WITH and CASE

 The WITH clause allows a user to define a table that will only be used in a particular query. This

table will be dropped after its use in that query.

 Queries using WITH can generally be written using other SQL constructs.

Example:

WITH LARGE_DEPTS (Dno) AS (SELECT Dno FROM EMPLOYEE

 GROUP BY Dno HAVING COUNT(*) > 5)

SELECT Dno, COUNT(*)

FROM EMPLOYEE

WHERE Sa l a r y> 4 00 0 0 AND D no IN LARGE DEPTS

GROUP BY D n o ;

Here a temporary table LARGE_DEPTS is defined using the WITH clause whose result holds the

Dnos of departments with more than 5 employees. This table is then used in the subsequent query.

Once this query is executed the temporary table LARGE_DEPTS is discarded.

 The SQL CASE construct can be used when a value can be different based on certain

conditions.

 It can be used in any part of an SQL query where a value is expected, including when

querying, inserting or updating tuples.

Example: Suppose we want to give employees different raise amounts depending on which department

they work for. Employees in department 5 get a $2000 raise, those in department 4 get $1500

and those in department 1 get $3000. We can write the update operation as:

UPDATE EMPLOYEE

SET Sa la r y = CASE WHEN D n o = 5 THEN S a l a r y + 2 0 0 0

WHEN D no = 4 THEN Sa l a r y + 1500 WHEN D no = 1 THEN Sa l a r y

+ 3 0 0 0 ELSE Sa l a r y+ 0 ;

Here the salary raise value is determined through the CASE construct based on the

department number for which each employee works.

 The CASE construct can also be used when inserting tuples that can have different attributes

being NULL depending on the type of record being inserted into a table, as when a

specialization is mapped into a single table or when a union type is mapped into a relation.

10. Recursive Queries in SQL

Mr.Lohith B and Santosh Page 13

 A recursive query can be written in SQL using WITH RECURSIVE construct. It allows users the

capability to specify a recursive query in a declarative manner.

 A recursive relationship between tuples of the same type is the recursive relationship between an

employee and supervisor. This relationship is described by the foreign key S up r_s sn of the

EMPLOYEE relation.

An example of a recursive operation is to retrieve all supervisees of a supervisor employee

e at all levels — all employees e' directly supervised by e, all employees e' directly supervised by

each employee e' , all employees e" ' directly supervised by each employee e' and so on.

WITH RECURSIVE SUP_EMP (S u p s sn , E m p ssn) AS

(SELECT S u p e r s n , S s n FROM EMPLOYEE

UNION S E L E C T E . S s n , S . S u p s s n

FROM E MPL OYE E AS E , S UP E M P AS S

WHEREE . S u p e r s s n = S . E m p s s n) SELECT *

FROM SUP_EMP;

Here the view SUP_EMP will hold the result of the recursive query. The view is initially empty. It

is first loaded with the first level (Supervisor, supervisee) Ssn combinations through the first

part (SELECT Super ssn, Ssn FROM EMPLOYEE) which is called the base query. This

will be combined via UNION with each successive level of supervisees through the second part,

where the view contents are joined again with the base values to get the second level combinations

which are UNIONed with the first level. This is repeated with successive levels until a fixed pint is

reached where no more tuples are added to the view. At this point the result of the recursive

query is in the view SUP EMP.

Select SQL Statement:

A query in SQL can consist of up to six clauses, but only the first two SELECT and FROM, are

mandatory. The clauses are specified in the following order:

 SELECT<attribute list>

 FROM<table list>

 [WHERE <condition>]

 [GROUP BY <grouping attribute(s)>]

[HAVING <group condition>]

[ORDER BY <attribute list>] ;

+ The clauses between square brackets are optional.

Mr.Lohith B and Santosh Page 14

 The select clause lists the attributes or functions to be retrieved.

 The FROM clause specifies all the relations or tables needed in the query including joined
relations

but not those in nested queries.

 The WHERE clause specifies the conditions for selection of tuples from these relations including join

conditions if needed.

 GROUP BY specifies grouping attributes whereas HAVING specifies a condition on the groups being

selected rather than on the individual tuples.

 The built in aggregate functions COUNT, SUM, AVG, MIN and MAX are used in conjunction with

grouping but they can also be applied to all the selected tuples in a query without the group by clause.

 :* ORDER BY specifies an order for displaying the result of a query. It is applied at the end to sort

the query result.

 A query is evaluated conceptually by first applying the FROM clause followed by the WHERE

clause and then by the GROUP BY and HAVING.

3.2 SPECIFYING CONSTRAINTS AS ASSERTIONS AND ACTIONS AS TRIGGERS

The CREATE ASSERTION can be used to specify additional types of constraints that are outside the

scope of the built-in relational model constraints (primary and unique keys, entity integrity and referential

integrity). These built-in constraints can be specified in CREATE TABLE statement of SQL. The

CREATE TRIGGER can be used to specify automatic actions that the database systems will perform

when certain events and conditions occur. This type of functionality is referred to as active databases.

1. Specifying General Constraints as Assertions in SQL:

 In SQL, users can specify general constraints via declarative assertions, using the CREATE

ASSERTION statement of the DDL.

 Each assertion is given a constraint name and is specified via a condition similar to the

WHERE clause of an SQL query.

 For example, to specify the constraint that "the salary of an employee must not be greater

than the salary of the manager of the department that the employee works for" in SQL, we can

write the following assertion:

CREATE ASSERTION SALARY CONSTRAINT

CHECK (NOT EXISTS(SELECT *

 FROM EMPLOYEE E, EMPLOYEE M,

DEPARTMENT D WHERE E.SALARY > M.SALARY AND

E.DNO = D.DNUMBER AND D.MGRSSN = M.SSN));

Mr.Lohith B and Santosh Page 15

 The constraint name SALARY_CONSTRAINT is followed by the keyword CHECK which is followed by

a

condition in parentheses that must hold true on every database state for the assertion to be satisfied.

 The constraint name can be used later to refer to the constraint or modify or drop it.

 The DBMS is responsible for ensuring that the condition is not violated.

 Any WHERE clause condition can be used but many constraints can be specified using the

EXISTS and NOT EXISTS style of SQL conditions.

 Whenever some tuples in the database cause the condition in the ASSERTION to evaluate to

FALSE, the constraint is violated. The constraint is satisfied by a database state if no

combination of tuples in that database state violates the constraint.

 To write an assertion, specify a query that selects any tuples that violate the desired condition.

By including this query inside a NOT EXISTS clause, the assertion will specify that the result of

this query must be empty so that the condition will always be TRUE. Thus the assertion is

violated if the result of the query isn't empty.

 The CHECK clauses on attributes, domains and tuples are, checked in SQL only when tuples are

inserted or updated in a specific table. Hence constraint checking can be implemented more

efficiently by DBMS in these cases. The schema designer should use CHECK on attributes,

domains and tuples only when sure that the constraint can only be violated by insertion or updating of

tuples and use CREATE ASSERTION only in cases where it is not possible to use CHECK on

attributes, domains or tuples so that checks are implemented efficiently by DBMS.

2. Trigger in SQL:

 The CREATE TRIGGER statement is used to specify the type of action to be taken

when certain events occur and when certain conditions are satisfied. For e.g., it may be useful to

specify a condition that, if violated, causes some user to be informed of the violation. A manager

may want to be informed if an employee's travel expenses exceed a certain limit by receiving a

message whenever this occurs. The action that the DBMS must take in this case is to send an

appropriate message to that user. The condition is thus used to monitor the database. Other

actions may be specified, such as executing a specific stored procedure or triggering other

updates.

 Example: Suppose we want to check whenever an employee's salary is greater than the

salary of his or her direct supervisor in the COMPANY database. Several events can trigger this

rule: inserting a new employee record, changing an employee's salary, or changing an employee's

supervisor. Suppose that the action to take would be to call an external stored procedure

SALARYLVIOLAT ION, which will notify the supervisor. The trigger could then be written as

below.

Mr.Lohith B and Santosh Page 16

CREATE TRIGGER SALARYLVIOLATION

BEFORE INSERT OR UPDATE OF SALARY, SUPERVISOR SSN ON

EMPLOYEE FOR EACH ROW

WHEN (NEW. SALARY > (SELECT SALARY FROM EMPLOYEE

WHERE SSN = NEW.SUPERVISOR SSN))

INFORM SUPERVISOR(NEW.Supervisor ssn, NEW.Ssn);

The trigger is given the name SALARY VIOLATION, which can be used to remove or deactivate

the trigger later.

 A typical trigger which is regarded as an ECA (Event, Condition, Action) rule has three

components:

 The event(s): These are usually database update operations that are explicitly applied to the

database. The person who writes the trigger must make sure that all possible events are accounted

for. In some cases, it may be necessary to write more than> one trigger to cover all possible cases.

These events are specified after the keyword BEFORE, which means that the trigger should be

executed before the triggering operation is executed. An alternative is to use the keyword

AFTER, which specifies that the trigger should be executed after the operation specified in the

event is completed.

1. The condition that determines whether the rule action should be executed: Once the

triggering event has occurred, an optional condition may be evaluated. If no condition is

specified, the action will be executed once the event occurs. If a condition is specified, it is

first evaluated, and only if it evaluates to true will the rule action be executed. The condition is

specified in the WHEN clause of the trigger.

. The action to be taken: The action is usually a sequence of SQL statements, but it could also

be a database transaction or an external program that will be automatically executed. In this

example, the action is to execute the stored procedure INFORM SUPERVISOR.

 Triggers can be used in various applications, such as maintaining database consistency, monitoring

database updates, and updating derived data automatically.

 A trigger specifies an event, a condition and an action. The action is to be executed automatically if

the condition is satisfied when the event occurs.

CREATE TRIGGER <trigger name>

(AFTER/ BEFORE) <triggering events> ON table

name [FOR EACH ROW]

[WHEN <condition>]

<trigger actions>

3.3 VIEWS (VIRTUAL TABLES) IN SQL

1. Concept of a View in SQL:

Mr.Lohith B and Santosh Page 17

 A view in SQL is a single table that is derived from other tables which could be base tables or

previously defined views.

 • A view does not necessarily exist in physical form; it is considered a virtual table, in contrast to

base tables, whose tuples are always physically stored in the database. This limits the possible

update operations that can be applied to views, but it does not provide any limitations on querying

a view.

 A view is a way of specifying a table that we need to reference frequently, even though it may not

exist physically.

 Queries can be specified on a view which is specified as single table retrievals.

2. Specification of Views in SQL:

 A view is specified by the SQL command CREATE VIEW.

 The view is given a (virtual) table name (or view name), a list of attribute names, and a query

to specify the contents of the view.

 If none of the view attributes results from applying functions or arithmetic operations, attribute

names for the view need not be specified, since they would be the same as the names of the

attributes of the defining tables in the default case.

 The view WORKS ON VIEW does not have new attribute names as it inherits the names of the

view attributes from the defining tables EMPLOYEE, PROJECT and WORKS ON.

CREATE VIEW WORKS ON VIEW

AS SELECT FNAME, LNAME, PNAME, HOURS

FROMEMPLOYEE, PROJECT, WORKS ON

WHERESSN=ESSN AND PNO=PNUMBER;

 The view DEPT INFO explicitly specifies new attribute names using a one to one

correspondence between the attributes specified in the CREATE VIEW clause and those

specified in the SELECT clause of the query that defines the view.

CREATE VIEW

A S SE L E C T

FROM

WHERE

GROUP BY

DEPT INFO(DEPT NAME, NO OF EMP, TOTAL SAL)

DNAME, COUNT(*), SUM(SALARY)

DEPARTMENT, EMPLOYEE

DNUMBER=DNO

DNAME;

 Queries can be specified on views just as specifying queries involving base tables.

Mr.Lohith B and Santosh Page 18

Example: To retrieve the last name and first name of all employees who work on `ProductX'

project.

QV: SELECT Fname,Lname

FROM WORKS ONI

WHERE Pname=' ProductX' ;

 Advantages of view: It simplifies the specification of certain queries. It is also used as a security and

authorization mechanism.

 A view should always be up- to date i.e., if we modify the tuples in the base tables on which the

view is defined, the view must automatically reflect these changes. Hence a view is not realized at

the time of view definition but when we specify a query on the view.

+ It is the responsibility of the DBMS to ensure that a view is up-to-date and not of the

user to ensure that the view is up-to-date.

 If a view is not needed, it can be removed by DROP VIEW command.

Eg: DROP VIEW WORKS ON VIEW;

3. View Implementation and View Update:

 Two main approaches have been suggested to know how efficiently DBMS implements a view

for efficient querying.

 The strategy of query modification involves modifying or transforming the view query into a

query on the underlying base tables.

Example: The query QV would automatically be modified to the following query by the DBMS.

SELECT FNAME, LNAME

FROM EMPLOUEE, PROJECT, WORKS ON

WHERE SSN=ESSN AND PNO=PNUMBER AND PNAME='ProjectX';

 The disadvantage of this approach is that it is inefficient for views defined via complex queries that

are time consuming to execute, especially if multiple queries are applied to the view within a short

time.

 The other strategy, view materialization involves physically creating a temporary view table when

the view is first queried and keeping that table on the assumption that other queries on the view

will follow. Here, an efficient strategy to automatically update the view when the base tables are

updated must be developed to keep the view up- to- date. Incremental update has been developed to

determine what new tuples must be inserted, deleted or modified in a materialized view table when a

change is applied to one of the defining base tables. The view is generally kept as a materialized

(physically stored) table as long as it is being queried. If the view is not queried for a certain period

of time, the system may then automatically remove the physical table and recomputed from scratch

when future queries reference the view.

Mr.Lohith B and Santosh Page 19

 Different strategies as to when a materialized view is updated are possible.

 immediate update strategy updates a view as soon as the base tables are changed.

 lazy update strategy updates the view when needed by a view query.

 periodic update strategy updates the view periodically (in the latter strategy, a view

query may get a result that is not up-to-date).

+ A retrieval query against any view can always be issued. But issuing an INSERT,

DELETE, or UPDATE command on a view table is in many cases not possible.

 In general, an update on a view defined on a single table without any aggregate functions can be

mapped to an update on the underlying base table under certain conditions.

 For a view involving joins, an update operation may be mapped to update operations on the

underlying base relations in multiple ways. Hence, it is not possible for the DBMS to determine

which of the updates is intended.

 Example: Suppose that we issue the command to update the Pname attribute of 'John Smith'

from ProductX' to 'Productr in the view WORKS_ONVIEW. This view update is shown in

UV1: UV': UPDATE WORKS ON1

SET P n a m e = ' Pr od u c t Y '

WHERE L n a m e = ' S m i t h ' AND F n a m e = ' J o h n ' A N D P n a m e = ' P r o d u c t X ' ;

This query can be mapped into several updates on the base relations to give the desired update effect

on the view. Some of these updates will create additional side effects that affect the result of other

queries. Two possible updates, (a) and (b), on the base relations corresponding to UVI are shown.

Update (a) relates 'John Smith' to the 'ProductY' PROJECT tuple in place of the 'ProductX'

PROJECT tuple and is the most likely desired update.

Mr.Lohith B and Santosh Page 20

(a) UPDATE WORKS ON

S E T P n o = (SE L E C T P n u m b e r

FROM PROJECT WHERE P n a m e = ' P r o d u c t Y ')

 WHE R E E s s n I N (SE L E C T S s n FROM EMPLOYEE

 WHE RE L n a m e = ’S m i t h ' AN D F n a m e = ' J o h n ')

 AND P n o = (SE L E CT P n u m b e r FROM PROJECT

 WH E R E P n a m e = ' P r o d u c t X ') ;

(b) U P D A T E P R O J E C T

SE T P n a m e = ' P r o d u c t Y '

WHER E P n a m e = ' P r o d u c t X ' ;

Update (b) would also give the desired update effect on the view, but it accomplishes this by changing

the name of the 'ProductX' tuple in the PROJECT relation to 'ProductY'. It is quite unlikely that

the user who specified the view update UVI wants the update to be interpreted as in (b), since it also

has the side effect of changing all the view tuples with Pname 'ProductX'.

 Some view updates may not make much sense. For example, modifying the Tota l_Sa l attribute of

the DEPT_INFO view does not make sense because Tota l Sa l is defined to be the sum of the

individual employee salaries. This request is shown as UV2:

UV2: UPDATE DEPT_INFO

SET T o t a l S a l = 1 0 0 0 0 0

 WHERE Dn a m e= ' Re s ea r ch ;

 A view update is feasible when only one possible update on the base relations can accomplish the

desired update effect on the view.

 Whenever an update on the view can be mapped to more than one update on the underlying base

relations, it is usually not permitted.

 A view with a single defining table is updatable if the view attributes contain the primary key of the

base relation, as well as all attributes with the NOT NULL constraint that do not have default values

specified.

 Views defined on multiple tables using joins are generally not updatable.

 Views defined using grouping and aggregate functions are not updatable.

 In SQL, the clause WITH CHECK OPTION should be added at the end of the view definition if a

view is to be updated by INSERT, DELETE, or UPDATE statements. This allows the system to reject

operations that violate the SQL rules for view updates.

 It is also possible to define a view table in the FROM clause of an SQL query. This is known as an in-

line view.

Mr.Lohith B and Santosh Page 21

4. Views as Authorization Mechanisms:

 Views can be used to hide certain attributes or tuples from unauthorized users.

 Suppose a certain user is only allowed to see employee information for employees who work for

department 5; then we can create the following view DEPTEMP and grant the user the privilege to

query the view but not the base table EMPLOYEE itself. This user will only be able to retrieve

employee information for employee tuples whose Dno = 5, and will not be able to see other employee

tuples when the view is queried.

CREATE VIEW DEPTEMP AS SELECT * FROM EMPLOYEE

WHERE Dn o = 5 ;

A view can restrict a user to only see certain columns; for example, only the first name, last name,

and address of an employee may be visible as follows:

CREATE VIEW BASIC _EMP DATA AS SELECT F n a m e , L n a m e , A d d r e s s FROM

EMPLOYEE;

 By creating an appropriate view and granting certain users access to the view and not the base tables,

they would be restricted to retrieving only the data specified in the view.

3.4 SCHEMA CHANGE STATEMENTS IN SQL The schema evolution commands available in SQL can be

used to alter a schema by adding or dropping tables, attributes, constraints and other schema elements.

1. The DROP Command:

 Used to drop named schema elements, such as tables, domains, or constraints.

 A whole schema can be dropped if it is not needed by using the DROP SCHEMA. command.

 There are two drop behavior options: CASCADE and RESTRICT.

For example, to remove the COMPANY database schema and all its tables, domains, and

other elements, the CASCADE option is used as follows:

DROP SCHEMA COMPANY CASCADE;

 If the RESTRICT option is chosen in place of CASCADE, the schema is dropped only if it has no

elements in it. Else the DROP command will not be executed if the schema has elements.

 If a base relation within a schema is not needed any longer, the relation and its definition can be

deleted by using the DROP TABLE command. The DEPENDENT relation can be removed by

issuing the following command:

DROP TABLE DEPENDENT CASCADE;

 If the RESTRICT option is chosen instead of CASCADE, a table is dropped only if it is not

referenced in any constraints (for example, by foreign key definitions in another relation) or

Mr.Lohith B and Santosh Page 22

views. With the CASCADE option, all such constraints and views that reference the table are

dropped automatically from the schema, along with the table itself.

 The DROP command can also be used to drop other types of named schema elements, such as

constraints or domains.

 The DROP TABLE command not only deletes all the records in the table if successful, but also

removes the table definition from the catalog.

2. The ALTER Command:

 The definition of a base table or of other named schema elements can be changed by using the ALTER

command.

 For base tables, the possible alter table actions include adding or dropping a column (attribute), changing a

column definition, and adding or dropping table constraints.

 For example, an attribute for keeping track of jobs of employees to the EMPLOYEE base

relation can be added in the COMPANY schema by using the command

ALTER TABLE COMPANY.EMPLOYEE ADD JOB VARCHAR(12);

A value for the new attribute JOB for each individual EMPLOYEE tuple must be entered. This can be

done either by specifying a default clause or by using the UPDATE command individually on each

tuple. If no default clause is specified, the new attribute will have NULLS in all the tuples of the

relation immediately after the command is executed; hence, the NOT NULL constraint is not allowed in

this case.

 A column can be dropped by choosing either the CASCADE or RESTRICT for drop behavior. If cascade is

chosen, all constraints and views that reference the column are dropped automatically from the schema along

with the column. If RESTRICT is chosen, the command is successful only if no views or constraints

reference the column.

For example, the attribute Address can be removed from the EMPLOYEE base table by using the

following command.

ALTER TABLE COMPANY.EMPLOYEE DROP COLUMN Address CASCADE;

A column definition can be altered by dropping an existing default clause or by defining a new default

clause.

ALTER TABLE COMPANY. DEPARTMENT ALTER COLUMN Mgr_ssn DROP default;

ALTER TABLE C OM PA N Y. D EPAR TM EN T ALTER COLUMN Mgr_ ss n SET default

‘12345’;

 A constraint specified on a table can be changed by adding or dropping a constraint. A constraint can be

dropped if it had been given a name when it was specified. For example, the constraint named

EMPSUPERFK can be dropped from the EMPLOYEE relation by

ALTER TABLE COMPANY. EMPLOYEE DROP CONSTRAINT EMPSUPERFK CASCADE;

Mr.Lohith B and Santosh Page 23

 We can redefine a replacement constraint by adding a new constraint to the relation, if needed. This is

specified by using the ADD keyword in the ALTER TABLE statement followed by the new constraint which

can be named or unnamed and can be of any of the table constraint types.

ALTER TABLE COMPANY. EMPLOYEE ADD CONSTRAINT EMPSUPERFK FO R EIGN KEY (SU PER
SSN) R EFER ENC ES EM PLO Y EE(SSN) ;

3.5 ACCESSING DATABASES FROM APPLICATIONS

The use of SQL commands within a host language program is called Embedded SQL. Details of

Embedded SQL also depend on the host language.

1. Embedded SQL:

 SQL statements (i.e. not declarations) can be used wherever statement in the host language is allowed (with a

few restrictions).

 SQL statements must be early marked so that a pre-processor can deal with them before invoking the

compiler for the host language.

 Any host language variables used to pass arguments into an SQL command must be declared in SQL. Some

special host language variables must be declared in SQL. For example, any error conditions arising during

SQL execution can be communicated back to the main application program in the host language.

 The data types recognized by SQL may not be recognized by the host language and vice versa. This

mismatch is typically addressed by casting data values appropriately before passing them to or from SQL

commands. SQL being set-oriented is addressed using cursors.

Declaring Variables and Exceptions:

 SQL statements can refer to variables defined in the host program. Such host-language variables must be

prefixed by a colon (:) in SQL statements.

 Host-language variables must be declared between the commands EXEC SQL BEGIN DECLARE

SECTION and EXEC SQL END DECLARE SECTION. The declarations are separated by semicolons. For

example, we can declare variables c_sname, c_sid, c_rat ing, and c_age (with the initial c used as a naming

convention to emphasize that these are host language variables) as follows:

EXEC SQL BEGIN DECLARE SECTION

char c sname [20];

long c_sid;

short c rating;

float c age;

EXEC SQL END DECLARE SECTION

 The SQL-92 standard defines a correspondence between the host language types and SQL types for a number

of host languages. In the example, c sname has the type CHARACTER (20) when referred to in an SQL

statement, c_sid has the type INTEGER, c rating has the type SMALLINT, and c_age has the type REAL.

 The SQL-92 standard recognizes two special variables for reporting errors when executing an SQL

statement, i.e. SQLCODE and SQLSTATE.

Mr.Lohith B and Santosh Page 24

 SQLCODE is defined to return some negative value when an error condition arises, without specifying

further just what error a particular negative integer denotes.

 SQLSTATE associates predefined values with several common error conditions, thereby introducing some

uniformity to how errors are reported. One of these two variables must be declared.

 The appropriate C type of SQLCODE is long and the appropriate C type of SQLSTATE is char [6] , that is, a

character string five characters long.

Embedding SQL Statements:

 All SQL statements embedded within a host program must be clearly marked. In C, SQL statements

Must be prefixed by EXEC SQL.

 An SQL statement can essentially appear in any place in the host language program where a host language

statement can appear.

Example: The following Embedded SQL statement inserts a row, whose column values are based

on the values of the host language variables contained in it, into the Sailors relation.

EXEC SQL

INSERT INTO Sailors VALUES (:c sname, :c_sid, :c rating, :c age);

 A semicolon terminates the command, as per the convention for terminating statements in C.

 The SQLSTATE variable should be checked for errors and exceptions after each Embedded SQL statement.

SQL provides the WHENEVER command to simplify this tedious task.

EXEC SQL WHENEVER [SQLERROR I NOT POUND] [CONTINUE I GOT) stmt]

 The intent is that the value of SQLSTATE should be checked after each Embedded SQL statement is

executed. If SQLERROR is specified and the value of SQLSTATE indicates an exception, control is

transferred to stmt, which is presumably responsible for error and exception handling. Control is also

transferred to stmt if NOT FOUND is specified and the value SQL STATE is 02000, which denotes NO

DATA.

2. Cursors:

 The impedance mismatch problem occurs when embedding SQL statements in a host language like C,

because SQL operates on set of records, whereas languages like C do not cleanly support a set-ofrecords

abstraction. The solution is to provide a mechanism that allows us to retrieve rows one at a time from a

relation. This mechanism is called a cursor.

 A cursor can be declared on any relation or on any SQL query.

 Once a cursor is declared we can-

1) open it which positions the cursor just`before the first row

2) fetch the next row

3) move the cursor (to the next row, to the row after next n, to the first row, or to the previous

row, etc., by specifying additional parameters for the FETCH command)

Mr.Lohith B and Santosh Page 25

4) close the cursor.

 A cursor essentially allows us to retrieve the rows in a table by positioning the cursor at a particular row and

reading its contents.

Basic Cursor Definition and Usage:

 Cursors enable us to examine, in the host language program, a collection of rows computed by an Embedded

SQL statement.

 A cursor needs to be opened if the embedded statement is a SELECT (i.e. a query). Opening a cursor can be

avoided if the answer contains a single row.

 INSERT, DELETE and UPDATE statements typically require no cursor although some variants of DELETE

and UPDATE use a cursor.

Example:

1. We can find the name and age of a sailor, specified by assigning value to the host variable c s

id as follows:
 EXEC SQL SELECT S.sname, S.age INTO :c_sname,:c_age

FROM Sailors S

WHERE S.sid = C_sid

The INTO clause allows us to assign the columns of a single answer row to the host variables

c s name and c age. Therefore, we do not need a cursor to embed this query in a host language

program.

2. Consider a query, which computes the names and ages of all sailors with a rating greater than

the current value of the host variable c minrat ing.

SELECT S . sname, S.age

 FROM Sailors S

WHERE S. rating > :c_minrating;

This query returns a collection of rows, not just one row. Hence a cursor needs to be used.

DECLARE sinfo CURSOR FOR

SELECT S.Sname, S.age

FROM SailOrs S

WHERE S.rating > :c_minrating

This code can be included in a C program, and once it is executed, the cursor sinfo is defined.

Subsequently, we can open the cursor:

OPEN sinfo;

Mr.Lohith B and Santosh Page 26

The value of c minrating in the SQL query associated with the cursor is the value of this variable

when we open the cursor. (The cursor declaration is processed at compile-time, and the OPEN

command is executed at run-time.)

 When a cursor is opened, it is positioned just before the first row. We can use the FETCH

command to read the first row of cursor sinfo into host language variables:

FETCH sinfo INTO :csname, :c age;

 When the FETCH statement is executed, the cursor is positioned to point at the next row (which is the first

row in the table when FETCH is executed for the first time after opening the cursor) and the column values in

the row are copied into the corresponding host variables. By repeatedly executing this FETCH statement

(say, in a while-loop in the C program), we can read all the rows computed by the query, one row at a time.

Additional parameters to the FETCH command allow us to position a cursor in very flexible ways.

 The special variables SQLCODE and SQLSTATE indicate when we have looked at all the rows associated

with the cursor.

 When we are done with a cursor, we can close it:

CLOSE sinfo;

 It can be opened again if needed, and the value of : c_minrating in the SQL query associated with the cursor

would be the value of the host variable c_minrating at that time.

Properties of Cursors:

 The general form of cursor declaration is:

DECLARE cursorname [INSENSITIVE] [SCROLL]

CURSOR [WITH HOLD]

FOR some query

 [ORDER BY order-item-list]

 [FOR READ ONLY FOR UPDATE]

 A cursor can be declared to be-

 a read-only cursor (FOR READ ONLY) or,

 an updatable cursor (FOR UPDATE) if it is a cursor on a base relation or an updatable

view.

 If it is updatable, simple variants of the UPDATE and DELETE commands allow us to update or delete the

row on which the cursor is positioned.

For example, if sinfo is an updatable cursor and open, we can execute the following statement:

UPDATE Sailors S

SET S.rating = S.rating-1

WHERE CURRENT of sinfo;

This Embedded SQL statement modifies the rating value of the row currently pointed to by cursor

sinfo. We can delete this row by executing the next statement:

Mr.Lohith B and Santosh Page 27

DELETE Sailors S

WHERE CURRENT of sinfo;

 A cursor is updatable by default unless it is scrollable, which means that variants of the FETCH command

can be used to position the cursor in very flexible ways; otherwise, only the basic FETCH command, which

retrieves the next row, is allowed.

 If the keyword INSENSITIVE is specified, the cursor behaves as if it is ranging over a private copy of the

collection of answer rows. Otherwise, and by default, other actions of some transaction could modify these

rows, creating unpredictable behavior.

For example, while we are fetching rows using the s info cursor, we might modify rating

values in Sailor rows by concurrently executing the command.

UP D A T E Sa i l or s S S E T S . r a t i n g = S . r a t i n g - 1;

Consider a Sailor row such that

 It has not yet been fetched, and

 Its original rating value would have met the condition in the WHERE clause of the query

associated with sinfo, but the new rating value does not.

If INSENSITIVE is specified, the behaviour is as if all answers were computed and stored when

sinfo was opened; thus, the update command has no effect on the rows fetched by sinfo if it is

executed after s in f o is opened. If INSENSITIVE is not specified, the behaviour is implementation

dependent in this situation.

 A holdable cursor is specified using the WITH HOLD clause, and is not closed when the transaction is

committed. This is needed for a long transaction in which we access (and possibly change) a large number of

rows of a table. We can break the transaction into several smaller transactions. The application program can

commit the transaction it initiated while retaining its handle on the active table (i.e. the cursor).

 The order in which FETCH command retrieves rows, in general is unspecified, but the optional ORDER BY

clause can be used to specify a sort order. The columns mentioned in'the ORDER BY clause cannot be

updated through the cursor.

 The order-item-list is a list of order-items; an order-item is a column name, optionally followed by one of the

keywords ASC or DESC. Every column mentioned in the ORDER BY clause must also appear in the select-

list of the query associated with the cursor, otherwise it is not clear what columns we should sort on. The

keywords ASC or DESC that follow a column control whether the result should be sorted-with respect to that

column-in ascending or descending order; the default is ASC. This clause is applied as the last step in

evaluating the query.

Mr.Lohith B and Santosh Page 28

3. Dynamic SQL:

 An application such as a spreadsheet or a graphical front-end that needs to access data from a DBMS, accepts

commands from a user and, based on the user needs, generates appropriate SQL statements to retrieve the

necessary data. In such situations, it is not possible to predict in advance which SQL statements need to be

executed. SQL provides Dynamic SQL to deal with such situations.

 The two main commands, PREPARE and EXECUTE are used:

char c_sqlstring[] = {"DELETE FROM Sailors WHERE rating > 5"};

EXEC SQL PREPARE readytogo FROM :c_sqlstring;

EXEC SQL EXECUTE readytogo;

The first statement declares the C variable c_sqlstring and initializes its value to the

string representation of an SQL command. The second statement results in this string being parsed

and compiled as an SQL command, with the resulting executable bound to the SQL variable

readytogo. The third statement executes the command.

 The preparation of a Dynamic SQL command occurs at run-time and is run-time overhead.

 Interactive and Embedded SQL commands can be prepared once at compile-time and then re-executed as

often as desired.

 The use of Dynamic SQL should be limited to situations in which it is essential.

3.6 AN INTRODUCTION TO JDBC

 When SQL is embedded in a general-purpose programming language, a DBMS-specific preprocessor

transforms the Embedded SQL statements into function, calls in the host language.

 The source code can be compiled to work with different DBMSs but the final executable works only with

one specific DBMS.

 ODBC(Open DataBase Connectivity) and JDBC(Java DataBase Connectivity), also enable the integration of

SQL with a general-purpose programming language. They expose database capabilities to the application

programmer through an application programming interface (API).

 In contrast to Embedded SQL, ODBC and JDBC allow a single executable to access different DBMSs

without recompilation. Thus, while Embedded SQL is DBMS-independent only at the source code level,

applications using ODBC or JDBC are DBMS-independent at the source code level and at the level of the

executable. Using ODBC or JDBC, an application can access several DBMSs simultaneously.

 ODBC and JDBC achieve portability at the level of the executable by introducing an extra level of

indirection.

 All direct interaction with a specific DBMS happens through a DBMS-specific driver.

 A driver is a software program that translates the ODBC or JDBC calls into DBMS-specific calls.

 Drivers are loaded dynamically on demand since the DBMSs the application is going to access are known

only at run-time. Available drivers are registered with a driver manager. It is sufficient that the driver

translates the SQL commands from the application into equivalent commands that the DBMS understands.

Mr.Lohith B and Santosh Page 29

 A data storage subsystem with which a driver interacts is referred to as a data source.

 An application that interacts with a data source through ODBC or JDBC selects a data source, dynamically

loads the corresponding driver, and establishes a connection with the data source.

 An application can have several open connections to different data sources. Each connection has transaction

semantics - changes from one connection are visible to other connections only after the connection has

committed its changes.

 While a connection is open, transactions are executed by submitting SQL statements, retrieving results,

processing errors, and finally committing or rolling back.

 The application disconnects from the data source to terminate the interaction.

1. Architecture:

 The architecture of JDBC has four main components:

1. The application - initiates and terminates the connection with a data source. It sets transaction

boundaries, submits SQL statements, and retrieves the results-all through a well-defined interface as

specified by the JDBC API.

2. The driver manager - load JDBC drivers and pass JDBC function calls from the application to the

correct driver. The driver manager also handles JDBC initialization and information calls from the

applications and can log all function calls. In addition, the driver manager performs some

rudimentary error checking.

3. Several data source specific drivers - The driver establishes the connection with the data source. In

addition to submitting requests and returning request results, the driver translates data, error

formats, and error codes from a form that is specific to the data source into the JDBC standard.

4. Corresponding data sources - The data source processes commands from the driver and returns the

results.

 Depending on the relative location of the data source and the application, several architectural scenarios are

possible.

 Drivers in JDBC are classified into four types depending on the architectural relationship between the

application and the data source:

 Type I-Bridges: This type of driver translates JDBC function calls into function calls of another

API that is not native to the DBMS. An example is the JDBC-ODBC bridge; an application can

use JDBC calls to access an ODBC compliant data source. The application loads only one driver,

the bridge. Bridges have the advantage that is easy to piggyback the application onto an existing

installation, and no new drivers have to be installed. But using bridges has several drawbacks. The

increased number of layers between data source and application affects performance. In addition,

the user is limited to the functionality that the ODBC driver supports.

Mr.Lohith B and Santosh Page 30

 Type II-Direct Translation to the Native API via Non-Java Driver: This type of driver

translates JDBC function calls directly into method invocations of the API of one specific data

source. The driver is usually written using a combination of C++ and Java; it is dynamically linked

and specific to the data source. This architecture performs significantly better than a JDBC-ODBC

bridge. One disadvantage is that the database driver that implements the API needs to be installed

on each computer that runs the application.

 Type III - Network Bridges: The driver talks over a network to a middleware server that

translates the JDBC requests into DBMS-specific method invocations. In this case, the driver on

the client site (i.e., the network bridge) is not DBMS-specific. The JDBC driver loaded by the

application can be quite small, as the only functionality it needs to implement is sending of SQL

statements to the middleware server. The middleware server can then use a Type II JDBC driver to

connect to the data source.

 Type IV-Direct Translation to the Native API via Java Driver: Instead of calling the DBMS

API directly, the driver communicates with the DBMS through Java sockets. In this case, the

driver on the client side is written in Java, but it is DBMS-specific. It translates JDBC calls into the

native API of the database system. This solution does not require an intermediate layer, and since

the implementation is all Java, its performance is usually quite good.

3.7 JDBC CLASSES AND INTERFACES

 JDBC is a collection of Java classes and interfaces that enables database access from programs written in

the‘Java language.

 It contains methods for connecting to a remote data source, executing SQL statements, examining sets of

results from SQL statements, transaction management, and exception handling.

 The classes and interface are part of the j ava . sql package.

 The package j avax sql adds the capability of connection pooling and the RowSet interface.

1. JDBC Driver Management:

 In JDBC, data source drivers are managed by the Drivermanager class which maintains a list of all

currently loaded drivers.

 The Drivermanager class has methods registerDriver, deregisterDriver, and getDrivers to enable

dynamic addition and deletion of drivers.

 The first step in connecting to a data source is to load the corresponding JDBC driver. This is

accomplished by using the Java mechanism for dynamically loading classes.

 The static method forName in the Class class returns the Java class as specified in the argument string

and executes its static constructor. The static constructor of the dynamically loaded class loads an

instance of the Driver class, and this Driver object registers itself with the DriverManager class. The

following Java example code explicitly loads a JDBC driver:

Mr.Lohith B and Santosh Page 31

Class.forName("oracle/jdbc.driver.OracleDriver");

2. Connections:

 A session with a data source is started through creation of a Connection object.

 A connection identifies a logical session with a data source; multiple connections within the same

Java program can refer to different data sources or the same data source.

 Connections are specified through a JDBC URL, a URL that uses the jdbc protocol. Such a URL has

the form

jdbc:<subprotocol>:<otherParameters>

 In JDBC, connections can have different properties. For example, a connection can specify the

granularity of transactions. If auto commit is set for a connection, then each SQL statement is

`considered to be its own transaction. If autocommit is off, then a series of statements that compose a

transaction can be committed using the commit O method of the Connection class, or aborted using

the rollback () method. The Connection class has methods to set the autocommit mode (Connection .

setAutoCommit) and to retrieve the current autocommit mode (getAutoCommit).

 The example shown in figure establishes a connection to an oracle database assuming that the

strings user id and password are set to valid values.

String url = "jdbc:oracle:www.bookstore.com:3083"

Connection connection;

 try

 {

 connection =

DriverManager.getConnection(url,userid,password);

 }

 catch(SQLExceptionexcpt)

{

System.out.println(excpt.getMessage()

);

}

 The following methods are part of the Connection interface and permit setting and getting

other properties:

 p u b l i c i n t g e t T r a n s a c t i o n I s o l a t i o n () t h r o w s S Q L E x c e p t i o n a n d p u b l i c

v o i d s e t T r a n s a c t i o n I s o l a t i o n (i n t l e v e l) t h r o w s S Q L E x c e p t i o n .

T h es e t w o functions get and set the current level of isolation for transactions handled in the

current connection. All five SQL levels of isolation are possible, and argument 1 can be set as

follows:

Mr.Lohith B and Santosh Page 32

 TRANSACTION NONE

 TRANSACTION READ UNCOMMITTED

 TRANSACTION READ COMMITTED

 TRANSACTION REPEATABLE READ

 TRANSACTION SERIALIZABLE

 p u b l i c b o o l e a n g e t R e a d O n l y () t h r o w s S Q L E x c e p t i o n a n d p u b l i c v o i d

s e t R e a d O n l y (b o o l e a n r ea d O n l y) t h r o w s S Q L E x c e p t i o n . T hese two funct ions

allow the user to specify whether the transactions executed through this connection are read only.

 pub l i c B ool ea n i s C l os e d () t h r ows S Q LE x c ep t i on . Checks whether the current

connection has already been closed.

 setAutoCommi t(Boolean b) and getAut oCommit () .

Establishing a connection to a data source involves several steps, such as establishing a network

connection to the data source, authentication, and allocation of resources such as memory. In case an

application establishes many different connections from different parties (such as a Web server),

connections are often pooled to avoid this overhead. A connection pool is a set of established

connections to a data source. Whenever a new connection is, needed, one of the connections from the

pool is used, instead of creating a new connection to the data source.

 Connection pooling can be handled either by specialized code in the application or the optional

j avax sql package, which provides functionality for connection pooling and allows us to set

different parameters, such as the capacity of the pool, and shrinkage and growth rates.

3. Executing SQL Statements:

 In JDBC code examples, we assume that we have a Connection object named con.

 JDBC supports three different ways of executing statements:

 S t a te me n t The Statement class is the base class for Pr e pa r e d St a t e m en t class

and CallableStatement class. It allows us to query the data source with any static or

dynamically generated SQL query.

 PreparedStatement — The PreparedStatement class dynamically generates

precompiled SQL statements that can be used several times. These SQL statements can have

parameters, but their structure is fixed when the PreparedStatement object representing the

SQL statement is created.

 CallableStatement Consider the sample code using a PreparedStatement object

shown in Figure 6.3. The SQL query specifies the query string with ? ' for the values of the

parameters, which are set later using methods se tS t r ing, set Float, and set Int. The '?'

Mr.Lohith B and Santosh Page 33

placeholders can be used anywhere in SQL statements where they can be replaced with a value

- in the WHERE clause (e.g. 'WHERE author =?'), or in SQL UPDATE and INSERT

statements, as in Figure6.3.

 String sql = "INSERT INTO Books VALUES(?,?,?)";

 PreparedStatement pstmt = con.prepareStatement(sql);

 pstmt.setString(1, isbn);

 pstmt.setString(2, title);

 pstmt.setString(3, author);

 int numRows = pstmt.executeUpdate();

 The method setString is one way to set a parameter value; analogous methods are

available for int, float, and date. It is good to always use clearParameters () before

setting parameter values in order to remove any old data

 Different ways of submitting the query string to the data source.

1. executeUpdate method - used if we know that the SQL statement does not return any

records (SQL UPDATE, INSERT, ALTER, and DELETE statements). The executeUpdate

method returns an integer indicating the number of rows the SQL statement modified. It returns 0

for successful execution without modifying any rows.

2. executeQuery method - used if the SQL statement returns data, such as in a regular

SELECT query. JDBC has its own cursor mechanism in the form of a ResultS et object.

3. execute method - more general than executeQuery and executeUpdate.

Mr.Lohith B and Santosh Page 34

4. ResultSets:

 The statement executeQuery returns a ResultSet object, which is similar to a cursor.

 ResultSet cursors in JDBC 2.0 allow forward and reverse scrolling and in-place editing and

insertions.

 The ResultSet object allows us to read one row of the output of the query at a time.

 Initially, the Result Set is positioned before the first row, and we have to retrieve the first row with

an explicit call to the next () method.

 The next method returns false if there are no more rows in the query answer, and true otherwise.

 The code fragment shown in below illustrates the basic usage of a ResultSet object.

ResultSet rs = stmt executeQuery (sqlQuery) ;

String sqlQuery;

ResultSet rs = stmt.executeQuery(sqlQuery)

while (rs.next())

 next () allows us to retrieve the logically next row in the query answer.

 To move about in the query answer in other ways:

 previous () moves back one row.

 absolute (int num) moves to the row with the specified number.

 relative (int num) moves forward or backward (if num is negative) relative to the

current position. relative(4) has the same effect as previous.

 first () moves to the first row, and last () moves to the last row.

Matching Java and SOL Data Types:

 JDBC provides special data types and specifies their relationship to corresponding SQL data types.

Figure 6.5 shows the accessor methods in a ResultSet object for the most common SQL datatypes.

 With the accessor methods, we can retrieve values from the current row of the query result

referenced by the ResultSet object.

 There are two forms for each accessor method –

1. retrieves values by column index, starting at one

2. retrieves values by column name.

Mr.Lohith B and Santosh Page 35

SQL Type Java Class ResultSet get method

BIT Boolean getBoolean()

CHAR String getString()

VARCHAR String getString()

DOUBLE Double getDouble()

FLOAT Double getDouble()

INTEGER Integer getInt()

REAL Double getFloat()

DATE java.sql.Date getDate()

TIME java.sql.Time getTime()

TIMESTAMP java.sql.TimeStamp getTimestamp()

Figure 6.5: Reading SQL Datatypes from a ResultSet Object

The following example shows how to access fields of the current ResultSet row using accesssor

methods.

ResultSet rs=stmt.executeQuery(sqlQuery);

String sqlQuery;

ResultSet rs = stmt.executeQuery(sqlQuery)

while (rs.next())

{

isbn = rs.getString(1);

title = rs.getString("TITLE");

}

5. Exceptions and Warnings:

 The methods in j ava . sql can throw an exception of the type SQLException if an error occurs.

 The information includes SQLState, a string that describes the error (e.g., whether the statement

contained an SQL syntax error).

 In addition to the standard getMessage () method inherited from Throwable, SQLException has two

additional methods that provide further information, and a method to get (or chain) additional

exceptions:

 public String getSQLStat () returns an SQLState identifier based on the SQL:1999

specification.

 public int getErrorCode () retrieves a vendor-specific error code.

 public SQLException getNextException () gets the next exception in a chain of

exceptions associated with the current SQLException object.

Mr.Lohith B and Santosh Page 36

 An SQLWarning is a subclass of SQLException.

 Warnings are not as severe as errors and the program can usually proceed without special handling

of warnings.

 Warnings are not thrown like other exceptions, and they are not caught as part of the try-catch block

around a java . sql statement. We need to specifically test whether warnings exist.

 Connection, Statement, and ResultSet objects all have a getWarnings () method with which we can

retrieve SQL warnings if they exist.

 Duplicate retrieval of warnings can be avoided through clearWarnings () .

 Statement objects clear warnings automatically on execution of the next statement. ResultSet objects

clear warnings every time a new tuple is accessed.

 Typical code for obtaining SQLWarnings looks similar to the code shown below.

 try {
stmt = con.createStatement();

warning = con.getWarnings();

while(warning != null)

warning = warning. getNextWarning ()

con . clearWarnings () ;

stmt . executeUpdate (queryString ;

warning = stmt . getWarnings () ;

while (warning ! = null)

wa r n i n g = wa r n i n g . g e t N e x t W a r n i n g () ;
 }catch (SQLException SQLe)

}

3.8 SQLJ

 SQLJ (short for 'SQL-Java') was developed by the SQLJ Group, to complement the dynamic way of

creating queries in JDBC with a static model.

 Unlike JDBC, having semi-static SQL queries allows the compiler to perform SQL syntax checks,

strong type checks of the compatibility of the host variables with the respective SQL attributes, and

consistency of the query with the database schema-tables, attributes, views, and stored procedures-

all at compilation time.

 In both SQLJ and Embedded SQL, variables in the host language always are bound statically to the

same arguments, whereas in JDBC, we need separate statements to bind each variable to an

argument and to retrieve the result.

 Example: SQLJ statement binds host language variables title, price, and author to the return

values of the cursor books.

#sq l books — {

SELECT title, price INTO :title, :price

Mr.Lohith B and Santosh Page 37

FROM Books WHERE author = :author } ;

 In JDBC, we can dynamically decide which host language variables will hold the query result.

 In the following example, we read the title of the book into variable ft it le if the book was written

by Feynman, and into variable ot it le otherwise:

// assume we have a ResultSet cursor rs ;

author = rs.getString(3);

if (author=="Feynman")

ftitle = rs.getString(2);
else

otitle = rs.getString(2);

 When writing SQLJ applications, we just write regular Java code and embed SQL statements

 according to a set of rules.

 SQLJ applications are pre-processed through an SQLJ translation program that replaces the embedded

SQLJ code with calls to an SQLJ Java library. The modified program code can then be compiled by

any Java compiler.

 Usually the SQLJ Java library makes calls to a JDBC driver, which handles the connection to the

database system.

1. Writing SQLJ Code:

 SQLJ code fragment that selects records from the Books table that match a given author.

The corresponding JDBC code fragment looks as follows (assuming we also declared price, name, and

author:

 Comparing the JDBC and SQLJ code, the SQLJ code is easily readable than the JDBC code. Thus,

SQLJ reduces software development and maintenance costs.

Mr.Lohith B and Santosh Page 38

 All SQLJ statements have the special prefix # sql.

 In SQLJ, we retrieve the results of SQL queries with iterator objects, which are basically cursors.

 An iterator is an instance of an iterator class. Usage of an iterator in SQLJ goes through five steps:

 Declare the Iterator Class:

s q l i t e r a t o r B o o k s (S t r i n g t i t l e , F l o a t p r i c e) ;

This statement creates a new Java class that we can use to instantiate objects.

 Instantiate an Iterator Object from the New Iterator Class: We instantiated our iterator in the

statement Books books;.

 Initialize the Iterator Using a SQL Statement: In our example, this happens through the

statement # s ql books =

 Iteratively, Read the Rows from the Iterator Object: This step is very similar to reading

rows through a ResultSet object in JDBC.

 Close the Iterator Object.

 There are two types of iterator classes:

➢ named iterators: For named iterators, we specify both the variable type and the name of each

column of the iterator. This allows us to retrieve individual columns by name. In the example,

we could retrieve the title column from the Books table using the expression books . title () .

➢ positional iterators: For positional iterators, we need to specify only the variable type for each

column of the iterator. To access the individual columns of the iterator, we use a FETCH .. .

INTO construct, similar to Embedded SQL.

Both iterator types have the same performance; which iterator to use depends on the programmer.

 The iterator can be made as a positional iterator through the following statement:

s q l i t e r a t o r B o o k s (S t r i n g , F l o a t) ;

Mr.Lohith B and Santosh Page 39

We then retrieve the individual rows from the iterator as follows:

w h i l e (t r u e)

s q l { F E T C H : b o o k s I N T O : t i t l e , : p r i c e , } ;

 i f (books . endFetch. ()) {

break;

 } }

3.9 STORED PROCEDURES

 When SQL statements are issued from a remote application, the records in the result of the query need

to be transferred from the database system back to the application. If we use a cursor to remotely

access the results of an SQL statement, the DBMS has resources such as locks and memory tied up

while the application is processing the records retrieved through the cursor.

 A stored procedure is a program that is executed through a single SQL statement that can be locally

executed and completed within the process space of the database server. The results can be packaged

into one big result and returned to the application, or the application logic can be performed directly at

the server, without having to transmit the results to the client at all.

 Once a stored procedure is registered with the database server, different users can re-use the stored

procedure, eliminating duplication of efforts in writing SQL queries or application logic, and making

code maintenance easy.

 Application programmers do not need to know the database schema if we encapsulate all database

access into stored procedures.

1. Creating a Simple Stored Procedure:

 Stored procedures must have a name. Otherwise, it just contains an SQL statement that is precompiled

and stored at the server.

CREATE PROCEDURE ShowNumberOfOrders

SELECT C.cid, C.cname, COUNT(*)

FROM Customers C, Orders 0

WHERE C.cid = O.cid

GROUP BY C.cid, C.cname

 Figure: A Stored Procedure in SQL

Mr.Lohith B and Santosh Page 40

 Stored procedures can also have parameters. These parameters have to be valid SQL types, and have

one of three different modes:

 IN parameters are arguments to the stored procedure.

 OUT parameters are returned from the stored procedure. It assigns values to all OUT

parameters that the user can process.

 INOUT parameters contain values to be passed to the stored procedures, and the stored

procedure can set their values as return values.

 Stored procedures enforce strict type conformance: If a parameter is of type INTEGER, it cannot be

called with an argument of type VARCHAR.

 The stored procedure Addlnventory has two arguments: book isbn and addedQty. It

updates the available number of copies of a book with the quantity from a new shipment.

CREATE PROCEDURE Addlnventory (

IN book isbn CHAR(10),

IN addedQty INTEGER)

UPDATE Books

SET qty in_stock = qty_in_stock + addedQty

WHERE book isbn = isbn

 Figure: A Stored Procedure with Arguments

 Stored procedures do not have to be written in SQL. They can be written in any host language. As an

example, the stored procedure RankCustomers is a Java function that is dynamically executed by

the database server whenever it is called by the client:

CREATE PROCEDURE RankCustomers(IN number INTEGER)

LANGUAGE Java

EXTERNAL NAME 'file: // /c: /storedProcedures/rank.jar'

2. Calling Stored Procedures:

 Stored procedures can be called in interactive SQL with the CALL statement:

CALL storedProcedureName(argumentl, argument2,…, argumentN);

In Embedded SQL, the arguments to a stored procedure are usually variables in the host language. For

example, the stored procedure AddInventory would be called as follows:

EXEC SQL BEGIN DECLARE SECTION

char isbn[10];

long qty;

EXEC SQL END DECLARE SECTION

// set isbn and qty to some values

EXEC SQL CALL AddInventory(:isbn,:qty);

Calling Stored Procedures from JDBC:

Mr.Lohith B and Santosh Page 41

 Stored procedures can be called from JDBC using the CallableStatment class.

CallableStatement is a subclass of PreparedStatement.

 A stored procedure could contain multiple SQL statements or a series of SQL statements. Thus, the

result could be many different ResultSet objects.

 The case when the stored procedure result is a single ResultSet is illustrated below.

CallableStatement cstmt=con.prepareCall("{call ShowNumber0fOrders}");

 ResultSet rs = cstmt.executeQuerY0 while (rs.next())

3. SQL/PSM:

 The SQL/PSM standard is a representative of most vendor specific languages.

 In PSM, we define modules, which are collections of stored procedures, temporary relations, and

other declarations.

 In SQL/PSM, a stored procedure is declared as follows:

CREATE PROCEDURE name (parameterl,..., parameterN)

local variable declarations

procedure code;

 In SQL/PSM, a function is declared as follows:

CREATE FUNCTION name (parameterl,..., parameterN)

RETURNS sq1DataType

local variable declarations

function code;

+ Each parameter is a triple consisting of the mode (IN, OUT, or INOUT), the parameter name, and

the SQL datatype of the parameter.

Example: A SQL/PSM function that illustrates SQL/PSM constructs.

The function takes as input a customer identified by her cid and a year The function returns the

rating of the customer, which is defined as follows:

 Customers who have bought more than ten books during the year are rated 'two';

 customers who have purchased between 5 and 10 books are rated 'one' ,

 otherwise the customer is rated 'zero'.

The following SQL/PSM code computes the rating for a given customer and year

CREATE PROCEDURE RateCustomer

(IN custId INTEGER, IN year INTEGER)

RETURNS INTEGER

DECLARE rating INTEGER;

DECLARE numOrders INTEGER;

SET numOrders =

(SELECT COUNT(*) FROM Orders 0 WHERE 0.cid = custId);

IF (numOrders>10) THEN rating=2;

Mr.Lohith B and Santosh Page 42

ELSEIF (numOrders>5) THEN rating=l;

ELSE rating--0;

END IF;

RETURN rating;

 Some SQL/PSM constructs are:

 DECLARE: Local variables can be declared using the DECLARE statement. In the example, we declare

two local variables: 'rating', and 'numOrders'.

 RETURN: PSM/SQL functions return values via the RETURN statement. In the example, we return

the value of the local variable 'rating'.

 SET : Values can be assigned to variables with the SET statement. In our example, we assigned

the return value of a query to the variable tnumOrderst.

 Branches have the following form:

IF (condition) THEN statements;

ELSEIF statements;

ELSEIF statements;

ELSE statements;

END IF

3.11 THE THREE-TIER APPLICATION ARCHITECTURE

Data-intensive Internet applications can be understood in terms of three different functional

components: data management, application logic, and preesentation. The component that handles data

management usually utilizes a DBMS for data storage, but application logic and presentation involve

much more than just the DBMS itself.

1. Single-Tier and Client -Server Architectures:

 Data-intensive applications were combined initially into a single tier, including the DBMS,

application logic, and user interface, as illustrated in Figure 7.5.

Mr.Lohith B and Santosh Page 43

Figure 7.5: A single - Tier architecture

 The application typically ran on a mainframe, and users accessed it through dumb terminals

that could perform only data input and display. This approach has the benefit of being easily

maintained by a central administrator.

Single-tier architectures drawback:

i) Users expect graphical interfaces that require much more computational power than simple

dumb terminals.

ii) Centralized computation of the graphical displays of such interfaces requires much more

computational power than available with a single server. Thus, single-tier architectures do not scale

to thousands of users.

2. Two-tier architectures, also referred to as client-server architectures, consist of a client computer

and a server computer, which interact through a well-defined protocol.

 In the traditional client server architecture, the client implements just the graphical user

interface, and the server implements both the business logic and the data management. Such clients

are often called thin clients, and this architecture is illustrated in Figure 7.6.

 More powerful clients can implement both user interface and business logic. Clients

may also implement user interface and part of the business logic, with the remaining part being

implemented at

the server level. Such clients are often called thick clients, and this architecture is illustrated in Figure

7.7.

Mr.Lohith B and Santosh Page 44

Figure 7.6: A Two-server Architecture: Thin Clients

Figure 7.7: A Two tier Architecture: Thick Clients

 Two-tier architectures physically separate the user interface from the data management

layer. To implement two tier architectures, computers that run sophisticated presentation code

(and possibly, application logic) are required.

 Client-server development tools such as Microsoft Visual Basic and Sybase Power

builder permit rapid development of client-server software, contributing to the success of the

client-server model, especially the thin-client version.

Thick-client model disadvantages :

1. There is no central place to update and maintain the business logic, since the application code

runs at many client sites.

2. A large amount of trust is required between the server and the clients.

3. The thick-client architecture does not scale with the number of clients. It typically cannot handle

more than a few hundred clients. The application logic at the client issues SQL queries to the

server and the server returns the query result to the client, where further processing takes place.

Large query results might be transferred between client and server.

Mr.Lohith B and Santosh Page 45

4. Thick-client systems do not scale as the application accesses more and more database systems.

Assume there are x different database systems that are accessed by y clients, then there are x . y

different connections open at any time, clearly not a scalable solution.

 The disadvantages of thick-client systems and the widespread adoption of standard, very thin clients-

notably, Web browsers —have led to the widespread use thin-client architectures.

3. Three Tier Architectures:

 The thin-client two-tier architecture essentially separates presentation issues from the rest of the

application.

 The three-tier architecture goes one step further, and also separates application logic from data

management:

 Presentation Tier: Users require a natural interface to make requests, provide input, and to see

results. The widespread use of the Internet has made Web-based interfaces increasingly

popular.

 Middle Tier: The application logic executes here. An enterprise-class application reflects

complex business processes, and is coded in a general purpose language such as C++ or Java.

 Data Management Tier: Data-intensive Web applications involve DBMSs.

 Figure 7.9 shows the technologies relevant to each tier

Below figure shows the Three Tier Architecture:

Mr.Lohith B and Santosh Page 46

 Different technologies have been developed to enable distribution of the three tiers of an application

across multiple hardware platforms and different physical sites.

Overview of the Presentation Tier:

 At the presentation layer, we need to provide forms through which the user can issue requests, and

display responses that the middle tier generates.

 The hypertext markup language (HTML) is the basic data presentation language.

 This layer of code must easily adapt to different display devices and formats. For example, regular

desktops versus handheld devices versus cell phones. This adaptivity can be achieved either at the

middle tier through generation of different pages for different types of client, or directly at the

client through style sheets that specify how the data should be presented.

 In the latter case, the middle tier is responsible for producing the appropriate data in response to

user requests, whereas the presentation layer decides how to display that information.

Overview of the Middle Tier:

 The middle layer runs code that implements the business logic of the application: It controls what

data needs to be input before an action can be executed, determines the control flow between

multi-action steps, controls access to the database layer, and often assembles dynamically

generated HTML pages from database query results.

 The middle tier code is responsible for supporting all the different roles involved in the

application. For example, in an Internet shopping site implementation, we would like customers

to be able to browse the catalog and make purchases, administrators to be able to inspect current

inventory, and possibly data analysts to ask summary queries about purchase histories. Each of

these roles can require support for several complex actions.

Mr.Lohith B and Santosh Page 47

For example, consider that a customer who wants to buy an item (after browsing or searching

the site to find it). Before a sale can happen, the customer has to go through a series of steps:

She has to add items to her shopping basket, she has to provide her shipping address and

credit card number (unless she has an account at the site), and she has to finally confirm

the sale with tax and shipping costs added. Controlling the flow among these steps and

remembering already executed steps is done at the middle tier of the application. The data

carried along during this series of steps might involve database accesses, but usually it is not

yet permanent (for example, a shopping basket is not stored in the database until the sale

is confirmed).

3. Advantages of the Three -Tier Architecture:

1. Heterogeneous Systems: Applications can utilize the strengths of different platforms and different

software components at the different tiers. It is easy to modify or replace the code at any tier without

affecting the other tiers.

2. Thin Clients: Clients only need enough computation power for the presentation layer. Typically,

clients are Web browsers.

3. Integrated Data Access: In many applications, the data must be accessed from several sources.

This can be handled transparently at the middle tier, where we can centrally manage connections

to all database systems involved.

4. Scalability to Many Clients: Each client is lightweight and all access to the system is through the

middle tier. The middle tier can share database connections across clients. If the middle tier

becomes the bottle-neck, several servers can be deployed executing the middle tier code; clients can

connect to anyone of these servers, if the logic is designed appropriately.

The DBMS must be reliable for each data source to be scalable.

 Software Development Benefits: Dividing the application into parts that address presentation, data

access, and business logic, gains many advantages.

 The business logic is centralized, and is therefore easy to maintain, debug, and change.

 Interaction between tiers occurs through well-defined, standardized APIs. Therefore, each

application tier can be built out of reusable components that can be individually developed,

debugged, and tested.

3.12 THE PRESENTATION LAYER

Style sheets are languages that allow us to present the same webpage with different formatting for

clients with different presentation capabilities. Example: Web browsers versus cell phones, or even a

Netscape browser versus Microsoft's Internet Explorer.

Mr.Lohith B and Santosh Page 48

1. HTML Forms:

 HTML forms are a common way of communicating data from the client tier to the middle tier.

 The following is the general format of a form:

<FORM ACT ION="pa ge. jsp" ME T HOD="GE T " NAME ="Login Form ">

</FORM>

 A single HTML document can contain more than one form. Inside an HTML form, we can have

any HTML tags except another FORM element.

 The FORM tag has three important attributes:

1. ACTION: Specifies the URI of the page to which the form contents are

submitted; if the ACTION attribute is absent, then the URI of the current page is

used. In the example, the form input would be submitted to the page named

page. j sp, which should provide logic for processing the input from the form.

2. METHOD: The HTTP/1.0 method used to submit the user input from the

filled-out form to the webserver. There are two choices, GET and POST.

3. NAME: This attribute gives the form a name. Naming forms is good

style although its not necessary.

 Inside HTML forms, the INPUT, SELECT, and TEXTAREA tags are used to specify user input

elements; a form can have many elements of each type. The simplest user input element is an

INPUT field, a standalone tag with no terminating tag.

An example of an INPUT tag is the following:

< I N P U T T Y P E = " t e x t " N A M E = " t i t l e " >

 The INPUT tag has several attributes. The three most important ones are:

1. TYPE:The TYPE attribute determines the type of the input field. If the TYPE

attribute has value text, then the field is a text input field. If the TYPE attribute has

value password, then the input field is a text field where the entered characters are

displayed as stars on the screen. If the TYPE attribute has value reset, it is a simple

button that resets all input fields within the form to their default values. If the TYPE

attribute has value submit, then it is a button that sends the values of the different

input fields in the form to the server. The reset and submit input fields affect the

entire form.

2. NAME: The NAME attribute of the INPUT tag specifies the symbolic

name for this field and is used to ident ify the value of this input field

•

Mr.Lohith B and Santosh Page 49

when it is sent to the server. NAME has to be set for INPUT tags of all

types except submit and reset. In the example, we specified t it le as the

NAME of the input field.

3. VALUE: The VALUE attribute of an input tag can be used for text or

password fields to specify the default contents of the field. For submit

or reset buttons, VALUE determines the label of the button .

The form in Figure 7.11 shows two text fields, one regular text input field and one

password field. It also contains two buttons, a reset button labeled 'Reset Values' and a

submit button labeled 'Log on'. The two input fields are named, whereas the reset and

submit button have no NAME attributes.

<FORM ACTION="page.jsp" METHOD="GET" NAME="LoginForm">

<INPUT TYPE="text" NAME="username" VALUE=" Joe"><P>

<INPUT TYPE="password" NAME="password"><P>

<INPUT TYPE="reset" VALUE="Reset Values"><P>

<INPUT TYPE="submit" VALUE="Log on"›

</FORM>

Figure 7.11: HTML Form with Two Text Fields and Two Buttons

Passing Arguments to Server-Side Scripts:

There are two different ways to submit HTML Form data to the webserver.

1. If the method GET is used, then the contents of the form are assembled into a query URL and

sent to the server.

2. If the method POST is used, then the contents of the form are encoded as in the GET method,

but

the contents are sent in a separate data block instead of appending them directly to the URL.

Thus, in the GET method the form contents are directly visible to the user as the constructed URL,

whereas in the POST method, the form contents are sent inside the HTTP request message body

and are not visible to the user.

Mr.Lohith B and Santosh Page 50

 Using the GET method gives users the opportunity to bookmark the page with the constructed

URL

and thus directly jump to it in subsequent sessions; this is not possible with the POST method.

 The choice of GET versus POST should be determined by the application and its requirements.

 The encoded URI has the following form when the GET method is used:

action?namel=valuel&name2=value2&name3=value3

The action is the URI specified in the ACTION attribute to the FORM tag, or the current

document URI if no ACTION attribute was specified. The 'name=value' pairs are the user inputs

from the INPUT fields in the form. For form INPUT fields where the user did not input

anything, the name is still present with an empty value (name=).

Example: Consider the password submission form at the end of the previous section. Assume that

the user inputs 'John Doe' as username, and 'secret' as password. Then the request URI is:

page.jsp?username=John+Doe&password=secret

 The user input from forms can contain general ASCII characters, such as the space character, but

URIs have to be single, consecutive strings with no spaces. Therefore, special characters such as

spaces, '=', and other unprintable characters are encoded in a special way.

 The following three steps are performed to create a URI that has form fields:

I. Convert all special characters in the names and values to '%xyz,' where 'xyz' is the ASCII

value of the character in hexadecimal. Special characters include -----, &, %, +, and other

unprintable characters. We could encode all characters by their ASCII value.

2. Convert all space characters to the '+' character.

3. Glue corresponding names and values from an individual HTML INPUT tag together with '='

and then paste name-value pairs from different HTML INPUT tags together using '&' to create a

request URI of the form:

action?namel=valuel&name2=value2&name3=value3

 Inorder to process the input elements from the HTML form at the middle tier, the ACTION

attribute of the FORM tag needs to point to a page, script, or program that will process the values

of the form fields the user entered.

Mr.Lohith B and Santosh Page 51

2. JavaScript:

 JavaScript is a scripting language at the client tier with which programs can be added to

webpages that run directly at the client (i.e., at the machine running the Web browser).

• JavaScript is often used for the following types of computation at the client:

1. Browser Detection: JavaScript can be used to detect the browser type and

load a browser-specific page.

2. Form Validation: JavaScript is used to perform simple consistency checks

on form fields. For example, a JavaScript program might check whether a

form input that asks for an email address contains the character '@,' or if all

required fields have been input by the user.

3. Browser Control: This includes opening pages in customized windows.

Examples: The pop-up advertisements at many websites are programmed

using JavaScript.

 JavaScript is usually embedded into an HTML document with a special tag, the SCRIPT tag. The

SCRIPT tag has the attributes:

1. LANGUAGE, which indicates the language in which the script is written. For

JavaScript, the language attribute is set to JavaScript.

2. SRC, which specifies an external file with JavaScript code that is automatically

embedded into the HTML document. Usually JavaScript source code files use a

.js extension. The following fragment shows a JavaScript file included in an

HTML document:

<SCRIPT LANGUAGE=" JavaScript" SRC="validateForm.js"> </SCRIPT>

The SCRIPT tag can be placed inside HTML comments so that the JavaScript code is not displayed

verbatim in Web browsers that do not recognize the SCRIPT tag.

Example: A JavaScipt code that creates a pop-up box with a welcoming message.

<SCRIPT LANGUAGE=" JavaScript" >

<!--

alert (" Welcome to our bookstore");

//-->

</SCRIPT>

 JavaScript provides two different commenting styles:

 single-line comments that start with the '//' character, and

Mr.Lohith B and Santosh Page 52

 multi-line comments starting with '/*' and ending with "*/” characters.

 JavaScript has variables that can be numbers, boolean values (true or false), strings, and some other

data types.

 Global variables have to be declared in advance of their usage with the keyword var, and they can be

used anywhere inside the HTML documents.

 Variables local to a JavaScript function need not be declared.

 Variables do not have a fixed type, but implicitly have the type of the data to which they have been

assigned.

 JavaScript has the assignment operators (=, + =, etc.), the arithmetic operators (+, *, /, %), the

comparison operators (==, ! =, >=, etc.), and the boolean operators (&& for logical AND, for logical

OR, and ! for negation).

 Strings can be concatenated using the '+' character.

 The type of an object determines the behavior of operators. Example: 1+1 is 2, since we are adding

numbers. "1"+"1" is "11," since we are concatenating strings.

 JavaScript contains the types of statements such as:

Assignments

conditional statements (if (condition) {statements; } else {statements;

})

loops (for-loop, do-while, and while-loop).

JavaScript allows function creation using the function keyword:

function f (argl, arg2) {statements;}

Functions can be called from JavaScript code and functions can return values using the keyword return.

Example: A JavaScript function that tests whether the login and password fields of a HTML form are not

empty.

<SCRIPT LANGUAGE==" JavaScript"›

<!--

function testLoginEmpty()

loginForm = document.LoginForm

if ((loginForm.userid.value == "") II
(loginForm.password.value == "")) {

alert('Please enter values for userid and password.');

return false;

■

Mr.Lohith B and Santosh Page 53

}

else

return true;

//-->

</SCRIPT>

<H1 ALIGN = "CENTER" >Barns and Nobble Internet Bookstore</H1>

<H3 ALIGN = "CENTER">Please enter your userid and password:</H3>

<FORM NAME = "LoginForm" METHOD="POST"

ACTION= "TableOfContents.jsp"

onSubmit="return testLoginEmpty()" >

Userid: <INPUT TYPE="TEXT" NAME="userid"><P>

Password: <INPUT TYPE="PASSWORD" NAME="password"><P>

<INPUT TYPE="SUBMIT" VALUE="Login" NAME="SUBMIT">

<INPUT TYPE="RESET" VALUE="Clear Input" NAME="RESET">

</FORM>

3. Style Sheets:

 A style sheet is a method to adapt the same document contents to different presentation formats.

 A style sheet contains instructions that tell a Web browser (or whatever the client uses to display the

webpage) how to translate the data of a document into a presentation that is suitable for the client's

display.

 Style sheets separate the transformative aspect of the page from the rendering aspects of the

page. During transformation, the objects in the XML document are rearranged to form a

different structure, to omit parts of the XML document, or to merge two different XML

documents into a single document.

 During rendering, the existing hierarchical structure of the XML document is formatted

according to the user's display device.

Advantages of using style sheets:

1. We can reuse the same document many times and display it differently depending on the

context.

2. We can tailor the display to the reader's preference such as font size, color style, and even

level of detail.

3. We can deal with different output formats, such as different output devices (laptops versus

cell Phones), different display sizes (letter versus legal paper), and different display media

(paper

 versus digital display).

4. We can standardize the display format within a corporation and thus apply style sheet

 Conventions to documents at any time. Further, changes and improvements to these display

Mr.Lohith B and Santosh Page 54

 conventions can be managed at a central place.

Two style sheet languages - XSL and CSS.

 CSS was created for HTML with the goal of separating the display characteristics of different

formatting tags from the tags themselves.

 XSL is an extension of CSS to arbitrary XML documents. XSL contains a transformation

language that enables us to rearrange objects besides allowing to define, ways of formatting

objects.

The target files for CSS are HTML files, whereas the target files for XSL are XML files.

Cascading Style Sheets:

 A Cascading Style Sheet (CSS) defines how to display HTML elements.

 Styles are normally stored in style sheets, which are files that contain style definitions.

 Many different HTML documents, such as all documents in a website, can refer to the same CSS.

Thus, the format of a website can be changed by changing a single file. This is a very convenient way

of changing the layout of many webpages at the same time, and a first step toward the separation of

content from presentation.

An example style sheet is shown as.

BODY {BACKGROUND-COLOR: yellow}

H1 {FONT-SIZE: 36pt}
H3 {COLOR: blue}

P {MARGIN-LEFT: 50px; COLOR: red}

It is included into an HTML file with the following line:

<LINK REL="style sheet" TYPE="text/css" HREF="books.css" />

 Each line in a CSS sheet consists of three parts - a selector, a property, and a value. They are

syntactically arranged in the following way:

selector {property: value}.

 The selector is the element or tag whose format we are defining. The property indicates the

tag's attribute whose value is to be set in the style sheet, and the value is the actual value of the

attribute.

Consider the first line of the example style sheet shown as:

Mr.Lohith B and Santosh Page 55

BODY {BACKGROUND-COLOR: yellow}

This line has the same effect as changing the HTML code to the following:

<BODY BACKGROUND-COLOR="yellow" >.

The value should always be quoted, as it could consist of several words. More than one property for

the same selector can be separated by semicolons as shown in the example:

P {MARGIN-LEFT: 50px; COLOR: red}

XSL:

 XSL is a language for expressing style sheets.

 An XSL style sheet is, like CSS, a file that describes how to display an XML document of a given

type.

 XSL shares the functionality of CSS and is compatible with it (although it uses a different syntax).

 XSL contains the XSL Transformation language, or XSLT, a language that allows us to transform

the input XML document into a XML document with another structure.

 For example, with XSLT the order of elements that are displayed can be changed (e.g.; by sorting

them), elements can be processed more than once, elements can be suppressed in one place and

presented them in another, and generated text can be added to the presentation.

 XSL also contains the XML Path Language (XPath), a language that allows us to refer to parts of an

XML document. XSL also contains XSL Formatting Object, a way of formatting the output of an XSL

transformation.

3.13 THE MIDDLE TIER

The first generation of middle-tier applications was stand-alone programs written in a general-

purpose programming language such as C, C++, and Perl. The overheads include starting the

application every time it is invoked and switching processes between the webserver and the

application. Therefore, such interactions do not scale to large numbers of concurrent users. This led to

the development of the application server, which provides the run-time environment for several

technologies that can be used to program middle-tier application components.

The Common Gateway Interface is a protocol that is used to transmit arguments from HTML forms to

application programs running at the middle tier. The technologies for writing application logic at the

middle tier are Java servlets and Java Server Pages. Another important functionality is the

maintenance of state in the middle tier component of the application as the client component goes

through a series of steps to complete a transaction (for example, the purchase of a market basket of

items or the reservation of a flight).

Mr.Lohith B and Santosh Page 56

1. CGI: The Common Gateway Interface:

 The Common Gateway Interface connects HTML forms with application programs.

 It is a protocol that defines how arguments from forms are passed to programs at the server side.

Programs that communicate with the webserver via CGI are often called CGI scripts, since many

such application programs were written in a scripting language such like Peri.

Example: A program that interfaces with an HTML form via CGI.

The sample webpage shown in Figure 7.14 contains a form where a user can fill in the name of an

author. If the user presses the 'Send it' button, the Perl script 'findBooks.cgi' shown in Figure 7.14 is

executed as a separate process.

<HTML><HEAD><TITLE>The Database Bookstore</TITLE></HEAD>

<BODY>

<FORM ACTION="find books.cgi" METHOD=POST>

Type an author name:

<INPUT TYPE="text" NAME="authorName"

SIZE=30 MAXLENGTH=50>

<INPUT TYPE="submit" value="Send it"›

<INPUT TYPE="reset" VALUE="Clear form" >

</FORM>

</BODY></HTML>

Figure 7.14: A Sample Web Page Where Form Input Is Sent to a CGI Script

The CGI protocol defines how the communication between the form and the script is performed. Figure

7.15 illustrates the processes created when using the CGI protocol.

Figure 7.15: Process Structure with CGI scripts

Mr.Lohith B and Santosh Page 57

#!/usr/bin/perl

use CGI;

part 1

$dataIn = new CGI; $dataIn->header();

$authorName = $dataIn->param('authorName’);

part 2

print ("<HTML><TITLE>Argument passing test</TITLE> ") ;

print ("The user passed the following argument: ") ;

print ("authorName: ", $authorName);

part 3

print ("</HTML>");

exit;

Figure 7.16: A Simple Perl Script

Perl is an interpreted language that is often used for CGI scripting and many Perl libraries, called

modules, provide high-level interfaces to the CGI protocol. One such library, called the DBI library is

used in the example. The CGI module is a convenient collection of functions for creating CGI scripts. In

part 1 of the sample script, the argument of the HTML form is extracted and that is passed along from the

client as follows:

$ a u t h o r N a m e = $ d a t a i n -> p a r a m (` a u t h o r N a m e) ;

The parameter name authorName was used in the form in Figure 7.14 to name the first input field.

Conveniently, the CGI protocol abstracts the actual implementation of how the webpage is returned to the

Web browser; the webpage consists simply of the output of our program, and we start assembling the

output HTML page in part 2. Everything the script writes in print statements is part of the dynamically

constructed webpage returned to the Browser. In part 3, the closing format tags are appended to the

resulting page.

2. Application Servers:

 Application logic can be enforced through server-side programs that are invoked using the CGI

protocol. Since each page request results in the creation of a new process, this solution does not scale

well to a large number or simultaneous requests. This performance problem led to the development of

specialized programs called application servers.

 An application server maintains a pool of threads or processes and uses these to execute requests.

Thus, it avoids the startup cost of creating a new process for each request.

 Application servers have evolved into flexible middle-tier packages that provide many functions in

addition to eliminating the process-creation overhead. They facilitate concurrent access to several

heterogeneous data sources (e.g., by providing JDBC drivers), and provide session management

services.

Mr.Lohith B and Santosh Page 58

 Users expect the system to maintain continuity during such a multistep session. Several session

identifiers such as cookies, URI extensions, and hidden fields in HTML forms can be used to

identify a session. Application s:2:-vers provide functionality to detect when a session starts and ends

and keep track of the sessions of individual users. They also help to ensure database access by

supporting a general user-id mechanism.

Figure 7.17: Process structure in the application server Architecture

 The execution of business logic at the webserver's site, server-side processing, has become a standard

model for implementing more complicated business processes on the Internet.

3. Servlets:

 Java servlets are pieces of Java code that run on the middle tier, in either webservers or application

servers.

 Servlets are truly platform-independent.

 Since servlets are Java programs, they are very versatile. For example, servlets can build webpages,

access databases, and maintain state. Servlets have access to all Java APIs, including JDBC.

 All servlets must implement the Servlet interface.

 In most cases, servlets extend the specific HttpServlet class for servers that communicate with

clients via HTTP.

 The HttpServlet class provides methods such as doGet and doPost to receive arguments from

HTML forms, and it sends its output back to the client via HTTP. Servlets that communicate through

other protocols (such as ftp) need to extend the class GenericServlet.

 Servlets are compiled Java classes executed and maintained by a servlet container.

 The servlet container manages the lifespan of individual servlets by creating and destroying them.

Mr.Lohith B and Santosh Page 59

 Servlets can respond to any type of request but they are commonly used to extend the applications

hosted by webservers. For such applications, there is a useful library of HTTP-specific servlet

classes.

 Servlets usually handle requests from HTML forms and maintain state between the client and the

server.

A template of a generic servlet structure is shown below:

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

public class ServletTemplate extends HttpServlet f

public void doCet(HttpServletRequest request,

HttpServletResponse response)throws

ServletException, I0Exception f Printriter cut =

response.getWriter();

// Use 'out' to send content to browser

out.println("Hello World");

data depending on the HTTP transfer method. The service () method is not overridden unless we

want to program a servlet that handles both HTTP POST and HTTP GET requests identically.

The example, shown in Figure 7.19 illustrates how to pass arguments from an HTML form to a servlet.

http://java.io/

Mr.Lohith B and Santosh Page 60

4. JavaServer Pages:

 JavaServer pages (JSPs) interchange the roles of output and application logic.

Mr.Lohith B and Santosh Page 61

 JavaServer pages are written in HTML with servlet-like code embedded in special HTML tags. Thus,

in comparison to servlets, JavaServer pages are better suited to quickly building interfaces that have

some logic inside, whereas servlets are better suited for complex application logic.

 The middle tier handles JavaServer pages in a very simple way: They are usually compiled into a

servlet, which is then handled by a servlet container analogous to other servlets.

 Reading Form Parameters in JSP

5. Maintaining State:

There are basically two choices where we should maintain state since HTTP protocol cannot maintain

state. We can maintain state in the middle tier, by storing information in the local main memory of the

application logic, or even in a database system. Alternatively, we can maintain state on the client side

by storing data in the form of a cookie.

Maintaining State at the Middle Tier:

 At the middle tier, there are several choices as to where we maintain state.

 The state could be stored at the bottom tier, in the database server. The state survives crashes of

the system, but a database access is required to query or update the state, a potential performance

bottleneck.

 An alternative is to store state in main memory at the middle tier. The drawbacks are that this

information is volatile and that it might take up a lot of main memory.

 The state can also be stored in local files at the middle tier, as a compromise between the first

two approaches.

 A rule of thumb is to use state maintenance at the middle tier or database tier only for data that needs

to persist over many different user sessions. Examples of such data are past customer orders, click-

stream data recording a user's movement through the website, or other permanent choices that a user

makes, such as decisions about personalized site layout, types of messages the user is willing to

receive, and so on. As these examples illustrate, state information is often centered around users who

interact with the website.

Mr.Lohith B and Santosh Page 62

Maintaining State at the Presentation Tier: Cookies:

 The state can be stored at the presentation tier and passed to the middle tier with every HTTP request.

We essentially work around the statelessness of the HTTP protocol by sending additional information

with every request. Such information is called a cookie.

 A cookie is a collection of <name, value> - pairs that can be manipulated at the presentation and

middle tiers.

 Cookies are easy to use in Java servlets and JavaServer Pages and provide a simple way to make non-

essential data persistent at the client. They survive several client sessions because they persist in the

browser cache even after the browser is closed.

 Disadvantage of cookies:

 Cookies are often perceived as being invasive, and many users disable cookies in their Web

browser. Browsers allow users to prevent cookies from being saved on their machines.

 The data in a cookie is currently limited to 4KB, but for most applications this is not a bad

limit. needs to have sufficient consistency checks to ensure that the data in the cookie is

valid.

 Cookies can be used to store information such as the user's shopping basket, login information, and

other non-permanent choices made in the current session.

The Servlet Cookie API:

 A cookie is stored in a small text file at the client and. contains <name, value> - pairs, where both

name and value are strings. We create a new cookie through the Java Cookie class in the middle tier

application code:

Cookie cookie = new Cookie("username" ,"guest");

cookie.setDomain("www.bookstore.com");

cookie.setSecure(false); / /no SSL required

cookie. setMaxAge (60*60*24*7*31) ; / /one month lifetime

response.addCookie(cookie);

First, a new Cookie object is created with the specified <name, value> - pair. Then the attributes of the

cookie are set. The cookie is added to the request object within the Java servlet to be sent to the client.

Once a cookie is received from a site (www.bookstore.com in this example), the client's Web browser

appends it to all HTTP requests it sends to this site, until the cookie expires. We can access the

contents of a cookie in the middle-tier code through the request object getCookies () method,

which returns an array of Cookie objects.

+ Some of the most common attributes of cookies are:

 set Domain and getDomain: The domain specifies the website that will receive the cookie.

The default value for this attribute is the domain that created the cookie.

http://www.bookstore.com/
http://www.bookstore.com/

Mr.Lohith B and Santosh Page 63

 setSe cure and getSecure: If this flag is true, then the cookie is sent only if we are using a

secure version of the HTTP protocol, such as SSL.

 setMaxAge and getMaxAge: The MaxAge attribute determines the lifetime of the cookie in

seconds. If the value of MaxAge is less than or equal to zero, the cookie is deleted when the

browser is closed.

 setName and getName: These functions allow us to name the cookie.

 setValue and getValue: These functions allow us to set and read the value of the cookie.

The following code fragment reads the array and looks for the cookie with name 'use

rname.'

Cookie[] cookies = request.getCookies();

String theUser;

for(int i=0; i < cookies.length; i++) {

Cookie cookie = cookies[i];

if (cookie.getName().equals("username"))

theUser = cookie.getValue();

 A simple test can be used to check whether the user has turned off cookies: Send a cookie to the user, and

then check whether the request object that is returned still contains the cookie. A cookie should

never contain an unencrypted password or other private, unencrypted data, as the user can inspect,

modify, and erase any cookie at any time, including in the middle of a session. The application logic

