
Dept of
CSE,CEC

Advanced java and J2EE(15cs553) Page 1

1. What Is a Servlet?

Module 4: SERVLET and JSP

• A servlet is a small Java program that runs within a Web server.

• Servlets receive and respond to requests from Web clients, usually across HTTP, the

Hyper Text Transfer Protocol.

• Servlet is an opposite of applet as a server-side applet.

• Applet is an application running on client while servlet is running on server.

• Servlets are server side components that provide a powerful mechanism for

developing web applications.

• Using servlets we can create fast and efficient server side applications and can

run it on any servlet enabled web server.

• Servlet runs entirely inside the JVM (Java Virtual Machine).

• Since the servlet runs on server side so it does not depend on browser compatibility.

Advantages of using Servlets

• Less response time because each request runs in a separate thread.

• Servlets are scalable.

• Servlets are robust and object oriented.
• Servlets are platform independent.

Dept of
CSE,CEC

Advanced java and J2EE(15cs553) Page 2

2. Servlet Architecture:

• The following figure depicts a typical servlet life-cycle scenario.

• First the HTTP requests coming to the server are delegated to the servlet container.

• The servlet container loads the servlet before invoking the service() method.

• Then the servlet container handles multiple requests by spawning multiple threads, each

thread executing the service() method of a single instance of the

servlet.

• User sends request for a servlet by clicking a link that has URL to a servlet.

• The container finds the servlet using deployment descriptor and creates two objects

HttpServletRequest

HttpServletResponse

• Then the container creates or allocates a thread for that request and calls the Servlet's service()

method and passes the request, response objects as arguments.

• The service() method, then decides which servlet method, doGet() or doPost() to call, based

on HTTP Request Method(Get, Post etc) sent by the client. Suppose the client sent an HTTP

GET request, so the service() will call Servlet's doGet() method.

• Then the Servlet uses response object to write the response back to the client.

Dept of
CSE,CEC

Advanced java and J2EE(15cs553) Page 3

• After the service() method is completed the thread dies. And the request and response objects

are ready for garbage collection.

3. Life cycle of servlet:

• The init() method

• The service() method

• The destroy() method

The init() method :

• The init method is designed to be called only once. It is called when the servlet is first

created, and not called again for each user request.

• So, it is used for one-time initializations, just as with the init method of applets.

• The servlet is normally created when a user first invokes a URL corresponding to the

servlet, but you can also specify that the servlet be loaded when the server is first

started.

• When a user invokes a servlet, a single instance of each servlet gets created, with

each user request resulting in a new thread that is handed off to doGet or doPost as

appropriate.

• The init() method simply creates or loads some data that will be used throughout the

life of the servlet.

• The init method definition looks like this:

Dept of
CSE,CEC

Advanced java and J2EE(15cs553) Page 4

public void init() throws ServletException

{

// Initialization code...

}

The service() method :

• The service() method is the main method to perform the actual task. The servlet

container (i.e. web server) calls the service() method to handle requests coming from

the client(browsers) and to write the formatted response back to the client.

• Each time the server receives a request for a servlet, the server spawns a new thread

and calls service. The service() method checks the HTTP request type (GET, POST,

PUT, DELETE, etc.) and calls doGet, doPost, doPut, doDelete, etc. methods as

appropriate.

• Here is the signature of this method:

public void service(ServletRequest request, ServletResponse response)

throws ServletException, IOException

{

}

• The service () method is called by the container and service method invokes doGe,

doPost, doPut, doDelete, etc. methods as appropriate. So you have nothing to do with

service() method but you override either doGet() or doPost() depending on what type

of request you receive from the client.

• The doGet() and doPost() are most frequently used methods with in each service

request. Here is the signature of these two methods.

The destroy() method :

• The destroy() method is called only once at the end of the life cycle of a servlet. This

method gives your servlet a chance to close database connections, halt background

threads, write cookie lists or hit counts to disk, and perform other such cleanup

activities.

• After the destroy() method is called, the servlet object is marked for garbage

collection. The destroy method definition looks like this:

public void destroy()

Dept of
CSE,CEC

Advanced java and J2EE(15cs553) Page 5

{

// Finalization code...

}

4. General structure of servlet/SKELEton of servlet:

imort javax.servlet.*;

class className extends GenericServlet

{

public void init() throws ServletException

{

// Initialization code...

}

public void service(ServletRequest request, ServletResponse response)throws

ServletException, IOException

{

}

public void destroy()

{

// Finalization code...

}

}

Dept of
CSE,CEC

Advanced java and J2EE(15cs553) Page 6

5. Simple Servlet program:

import java.io.*;

import javax.servlet.*;

public class A extends GenericServlet

{

public void service(ServletRequest req ,ServletResponse res)throws

ServletException,IOException

{

res.setContentType(“text/html”) ;

PrintWriter out=res.getWriter();

out.println(“<p> My First Servlet program </p> “);

}

}

Web deployment: (web.xml)

<servlet>

<servlet-name>CSA</servlet>

<servlet-class>A.class</sertlet-class>

</servlet>

<servlet-mapping>

<servlet-name>CSA</servlet>

<url-patter>*.dll</url-patter> </servlet-mapping>

6. servlet API:

javax.servlet - The javax.servlet package contains a number of classes and interfaces that

describe and define the contracts between a servlet class and the runtime environment

provided for an instance of such a class by a conforming servlet container.

javax.servlet.http-The javax.servlet.http package contains a number of classes and

interfaces that describe and define the contracts between a servlet class running under the

HTTP protocol and the runtime environment provided for an instance of such a class by a

conforming servlet container

Dept of
CSE,CEC

Advanced java and J2EE(15cs553) Page 7

7. The javax.servlet Package

The javax.servlet package contains a number of interfaces and classes that

establish the framework in which servlets operate.

Dept of
CSE,CEC

Advanced java and J2EE(15cs553) Page 8

8. The javax.servlet.http Package

The javax.servlet.http package contains a number of interfaces classes that are commonly

used by servlet developers.

Following are the class :

9. Reading Servlet Parameters

• The ServletRequest class includes methods that allow you to read the names and

values of parameters that are included in a client request.

• The example contains two files. A Web page is defined in PostParameters.htm and a

servlet is defined in PostParametersServlet.java.

Dept of
CSE,CEC

Advanced java and J2EE(15cs553) Page 9

• Different mathods to read parameter are as follows:

• getParameter(string)

• getParamaterNames();

• getParamaterValues();

getParameter()-returns a value of parameter in the string form

getParameterNames()-returns an enumeration of the parameter names.These are processed in

loop

Program: To display greeting message on the browser Hello UserName How Are You

accept username from the client.

import java.io.*;

import javax.servlet.ServletException;

import javax.servlet.http*;

public class Simple extends HttpServlet

{

public void doGet(HttpServletRequest req ,HttpServletResponse res)throws

ServletException,IOException

{

res.setContentType(“text/html”) ;

PrintWriter out=res.getWriter();

String msg=req.getParameter("t1");

out.println(“hello”+msg+”how are you”);

}

}

HTML code

<html>

<body>

<form action=”A” >

<input type=”text box” name=”t1” value=” “>

<input type=”submit” value=”submit”>

</form> </body> </html>

Dept of
CSE,CEC

Advanced java and J2EE(15cs553) Page 10

using getParameterName() method:

import java.io.*;

import javax.servlet.ServletException;

import javax.servlet.http*;

public class Simple extends HttpServlet

{

public void doGet(HttpServletRequest req ,HttpServletResponse res)throws

ServletException,IOException

{

res.setContentType(“text/html”) ;

PrintWriter out=res.getWriter();

Enumeration e=req.getParameterNames();

while(e.hasMoreElements())

{

Sting a=(String)e.nextElement();

String msg=request.getParameter(a);

out.println(msg);

}

}

<html>

<body>

<form action=”Simple”>

<input type=”text box” name=”t1” value=” “>

<input type=”text box” name=”t2” value=” “>

<input type=”submit” value=”submit”>

</form>

</body>

</html>

Dept of
CSE,CEC

Advanced java and J2EE(15cs553) Page 11

getParameterValues():

• Returns an array of String objects containing all of the values the given request parameter has, or

null if the parameter does not exist.

• If the parameter has a single value, the array has a length of 1.

• method getParameterValues() will generally came into picture if there is a chance of getting multiple values

for any input parameter, this method will retrieve all of it values and store as string array.

Syntax

String[] values = getParameterValues(“Input Parameter”);

<html>

<body>

<form action="Simple" >

 Skills :

 <input type="checkbox" name="t1" value="JAVA">JAVA

 <input type="checkbox" name="t1" value="C++">C++

 <input type="checkbox" name="t1" value="Python">PYTHON

 <input type="submit" value="Submit">

 </form>

</body>

</html>

 Simple.java

import java.io.*;

import javax.servlet.ServletException;

import javax.servlet.http*;

public class Simple extends HttpServlet

{

public void doGet(HttpServletRequest req ,HttpServletResponse res)throws

ServletException,IOException

{

PrintWriter pw=res.getWriter();

 String[] values=req.getParameterValues("t1");

 pw.println("Selected Values...");

 for(String a:values)

 pw.println(a);

 }

 }

Dept of
CSE,CEC

Advanced java and J2EE(15cs553) Page 12

10. Handling Http request and Http response:

• The HttpServlet class provide a specialized methods that handle the various types of

HTTP request.

• The different methods are:

doGet(),doPost(),doOperation(),doPut(),doTrace(),doDelete()

HTTP doGet() method:

• The doGet() method is the method inside a servlet that gets called every time a

request from a html or jsp page is submitted.

• The control first reaches the doGet() method of the servlet and then the servlet

decides what functionality to invoke based on the submit request. The get method

called when the type of page submission is "GET".

• doGet is used when there is are requirement of sending data appended to a query

string in the URL.

• The doGet models the GET method of Http and it is used to retrieve the info on the

client from some server as a request to it.

• The doGet cannot be used to send too much info appended as a query stream. GET

puts the form values into the URL string.

• GET is limited to about 256 characters (usually a browser limitation) and creates

really ugly URLs.

Program:

import java.io.*;

import javax.servlet.ServletException;

import javax.servlet.http*;

public class Simple extends HttpServlet {

public void doGet(HttpServletRequest request, HttpServletResponse response)throws

ServletException,IOException

{

res.setContentType(“text/html”) ;

PrintWriter out=res.getWriter();

Dept of
CSE,CEC

Advanced java and J2EE(15cs553) Page 13

String msg=req.getParameter("t1");

out.println(“hello”+msg+”how are you”);

}

}

<html>

<body>

<form action=”Simple” method=GET >

<input type=”text box” name=”t1” value=” “>

<input type=”submit” name=”submit”>

</form>

</body>

</html>

HTTP doPost() method:

• The doPost() method is the method inside a servlet that gets called every time a

requests from a HTML or jsp page calls the servlet using "POST" method.

• doPost allows you to have extremely dense forms and pass that to the server without

clutter or limitation in size. e.g. you obviously can't send a file from the client to the

server via doGet.

• doPost has no limit on the amount of data you can send and because the data does not

show up on the URL you can send passwords.

• But this does not mean that POST is truly secure. It is more secure in comparison to

doGet method.

Program:

import java.io.*;

import javax.servlet.ServletException;

import javax.servlet.http*;

public class Simple extends HttpServlet {

public void doPost(HttpServletRequest request, HttpServletResponse response)throws

ServletException,IOException

{

Dept of
CSE,CEC

Advanced java and J2EE(15cs553) Page 14

res.setContentType(“text/html”) ;

PrintWriter out=res.getWriter();

String msg=req.getParameter("t1");

out.println(“hello”+msg+”how are you”);

}

}

<html>

<body>

<form action=”Simple” method=POST>

<input type=”text box” name=”t1” value=” “>

<input type=”submit” name=”submit”>

</form>

</body>

</html>

Difference between HTTP doGet and HTTP doPost methods of Servlet

Difference Type GET (doGet()) POST (doPost())

HTTP Request The request contains only the

request line and HTTP

Along with request line and header

it also contains HTTP body.

URL Pattern Query string or form data is

simply appended to the URL

as name-value pairs.

Form name-value pairs are sent in

the body of the request, not in the

URL itself.

Parameter passing The form elements are passed

to the server by appending at

the end of the URL.

The form elements are passed in

the body of the HTTP request.

Size The parameter data is

limited (the limit depends

on the container normally

Can send huge amount of data to

the server.

Idempotency GET is Idempotent(can be applied

multiple times without changing

the values

POST is not idempotent(warns if

applied multiple times without

changing the values

Dept of
CSE,CEC

Advanced java and J2EE(15cs553) Page 15

Usage Generally used to fetch

some information from the

Generally used to process the sent

data.

Security Not Safe - A person standing over

your shoulder can view your

userid/pwd if submitted via Get

(Users can see data in address bar.)

Safe - No one will be able to view

what data is getting submitted (Data

hidden from users.)

Data Format Supports ASCII. Supports ASCII + Binary.

11. Using Cookies

• A cookie is a small piece of information that is persisted between the

multiple client requests.

• A cookie has a name, a single value, and optional attributes such as a comment,

path and domain qualifiers, a maximum age, and a version number.

• Different methods in cookie class are:

1. String getName()- Returns a name of cookie

2. String getValue()-Returns a value of cookie

3 .int getMaxAge()-Returns a maximum age of cookie in millisecond

4. String getDomain()-Returns a domain

5. boolean getSecure()-Returns true if cookie is secure otherwise false

6. String getPath()-Returns a path of cookie

7.void setPath(Sting)- set the path of cookie

8. void setDomain(String)-set the domain of cookie

Dept of
CSE,CEC

Advanced java and J2EE(15cs553) Page 16

Cookie c[]=req.getCookies();

for(int i=0;i<c.length;i++)

{

String Name=c[i].getName();

String value= c[i].getValue();

out.println(“name=”+Name);

out.println(“Value=”+Value);

}

9. void setMaxAge(int)-set the maximum age of cookie

10.void setSecure(Boolean)-set the secure of cookie.

Creating cookie:

• Cookie are created using cookie class constructor.

• Content of cookies are added the browser using addCookies() method.

Reading cookies:

• Reading the cookie information from the browser using getCookies() method.

• Find the length of cookie class.

• Retrive the information using different method belongs the cookie class.

Program: To create and read the cookie for the given cookie name as “EMPID” and its

value as”AN2356”.(vtu program)

public class A extends HttpServlet

{

public void doPost(HttpServletRequest request, HttpServletResponse response)throws

ServletException,IOException

{

res.setContentType(“text/html”) ;

PrintWriter out=res.getWriter();

/*reading cookies */

} }

/* creating cookie object */

Cookie c=new Cookie(“EMPID”,”AN2356”);

res.addCookie(c);//adding cookie in the response

Dept of
CSE,CEC

Advanced java and J2EE(15cs553) Page 17

12. What Is Session Tracking?

• Session tracking is the capability of a server to maintain the current state of a

single client’s sequential requests.

• Session simply means a particular interval of time.

• Session Tracking is a way to maintain state of a user.

• The HTTP protocol used by Web servers is stateless.

• Each time user requests to the server, server treats the request as the new request.

• So we need to maintain the state of a user to recognize to particular user.

• This type of stateless transaction is not a problem unless you need to know the

sequence of actions a client has performed while at your site.

• Different methods of HttpSession interface are as follows:

1. object getAttribute(String)-Returns the value associated with the name passed as

argument.

2. long getCreationTime()-Returns the time when session created.

3.String getID()-Returns the session ID

4.long getAccessedTIme()-returns the time when client last made a request for this session.

5.void setAttribute(String,object)-Associates the values passed in the object name passed.

Program:

import javax.servelt.*;

import java.io.*;

public class Simple extends HttpServlet

{

public void doGet(HttpServletRequest req ,HttpServletResponse res)throws

ServletException,IOException

{

res.setContentType(“text/html”) ;

PrintWriter out=res.getWriter();

Dept of
CSE,CEC

Advanced java and J2EE(15cs553) Page 18

HttpSession h=req.getSesssion(true);

h.setAttribute(“UserName”,”Santosh”);

out.println(“Get session ID”+h.getId());

out.println(“Creation Time”+new Date(h.getCreationTime()));

out.println(“Last Access Time”+new Date(h. getAccessedTIme()));

 out.println(“User Name”+h.getAttribute(“UserName”));

}

}

13. Servelt Interface:

methods description

void destroy() Called by the servlet container to indicate to a servlet

that the servlet is being taken out of service.

void init(ServletConfig config) Called by the servlet container to indicate to a servlet

that the servlet is being placed into service.

void service(ServletRequest req,

ServletResponse res)

Called by the servlet container to allow the servlet to
respond to a request.

getServletInfo() Returns information about the servlet, such as author,

version, and copyright.

ServletConfig getServletConfig() Returns a ServletConfig object, which contains

initialization and startup parameters for this servlet

The GenericServlet Class

• The GenericServlet class provides implementations of the basic life cycle methods for a

servlet.

• GenericServlet implements the Servlet and ServletConfig interfaces.

• In addition, a method to append a string to the server log file is available.The signatures of

this method are shown here:

Dept of
CSE,CEC

Advanced java and J2EE(15cs553) Page 19

void log(String s)

void log(String s, Throwable e)

• Here, s is the string to be appended to the log, and e is an exception that occurred

13.using Tomcat for servlet Development:

certain steps taken to setup the tomcat

1. The examples here is Windows environment. The default location for Tomcat 5.5.17 is

C:\Program Files\Apache Software Foundation\Tomcat 5.5\

2. to set the environmental variable JAVA_HOME to the top-level directory in which

the Java Software Development Kit is installed.

3. To start Tomcat, select Start Tomcat in the Start | Programs menu, , and the n press Start in

the Tomcat Properties dialog. The directory

C:\Program Files\Apache Software Foundation\Tomcat 5.5\common\lib\

Contain servlet.api.jar.

4.. To make this file accessible, update your CLASSPATH environment

variable so that it includes

C:\Program Files\Apache Software Foundation\Tomcat5.5\common\lib\servlet.api.jar

5. First. Copy the servlet’s class file into the following directory:

C:\Program Files\Apache Software

Foundation\Tomcat5.5\webapps\servlets.examples\WEB-INF\classes

6. Next, add the servlet’s name and mapping to the web.xml file in the following directory

C:\Program Files\Apache Software Foundation\Tomcat

5.5\webapps\servlets.examples\WEB-INF

Dept of
CSE,CEC

Advanced java and J2EE(15cs553) Page 20

JSP(java Server Page)

1. What Is JSP?

• Java based technology that simplifies the developing of dynamic web sites.

• JSP pages are HTML pages with embedded code that allows to access data from

Java code running on the server.

• JSP provides separation of HTML presentation logic from the application logic.

• JSP technology provides a way to combine the worlds of HTML and

Java servlet programming.

• JSP specs are built on the Java Servlet API.

• JSP supports two different styles for adding dynamic content to web pages:

• JSP pages can embed actual programming code (typically Java).

• JSP supports a set of HTML-like tags that interact with Java objects on the server

(without the need for raw Java code to appear in the page).

Advantages of JSP

• JSP are translated and compiled into JAVA servlets but are easier to develop

than JAVA servlets.

• JSP uses simplified scripting language based syntax for embedding HTML into JSP.

• JSP containers provide easy way for accessing standard objects and actions.

• JSP reaps all the benefits provided by JAVA servlets and web container

environment, but they have an added advantage of being simpler and more natural

program for web enabling enterprise developer.

• JSP use HTTP as default request / response communication paradigm and thus

make JSP ideal as Web Enabling Technology.

Dept of
CSE,CEC

Advanced java and J2EE(15cs553) Page 21

2. JSP Life cycle:

Initialization:

• When a container loads a JSP it invokes the jspInit() method before servicing any

requests. If you need to perform JSP-specific initialization, override the jspInit()

method:

public void jspInit()

{

// Initialization code...

}

• Typically initialization is performed only once and as with the servlet init method,

you generally initialize database connections, open files, and create lookup tables in

the jspInit method.

JSP service:

• This phase of the JSP life cycle represents all interactions with requests until the JSP

is destroyed.

• Whenever a browser requests a JSP and the page has been loaded and initialized, the

JSP engine invokes the _jspService() method in the JSP.

Dept of
CSE,CEC

Advanced java and J2EE(15cs553) Page 22

• The _jspService() method takes an HttpServletRequest and an

HttpServletResponse as its parameters as follows:

void _jspService(HttpServletRequest request, HttpServletResponse response)

{

// Service handling code...

}

• The _jspService() method of a JSP is invoked once per a request and is responsible

for generating the response for that request and this method is also responsible for

generating responses to all seven of the HTTP methods ie. GET, POST, DELETE etc.

JSP destroy:

• The destruction phase of the JSP life cycle represents when a JSP is being removed

from use by a container.

• The jspDestroy() method is the JSP equivalent of the destroy method for servlets.

Override jspDestroy when you need to perform any cleanup, such as releasing

database connections or closing open files.

• The jspDestroy() method has the following form:

public void jspDestroy()

{

// Your cleanup code goes here.

}

3. JSP Architecture:

The following steps explain how the web server creates the web page using JSP:

• As with a normal page, your browser sends an HTTP request to the web server.

• The web server recognizes that the HTTP request is for a JSP page and forwards it to

a JSP engine. This is done by using the URL or JSP page which ends with .jsp

instead of .html.

• The JSP engine loads the JSP page from disk and converts it into a servlet content.

This conversion is very simple in which all template text is converted to println()

Dept of
CSE,CEC

Advanced java and J2EE(15cs553) Page 23

statements and all JSP elements are converted to Java code that implements the

corresponding dynamic behavior of the page.

• The JSP engine compiles the servlet into an executable class and forwards the

original request to a servlet engine.

• A part of the web server called the servlet engine loads the Servlet class and executes

it. During execution, the servlet produces an output in HTML format, which the

servlet engine passes to the web server inside an HTTP response.

• The web server forwards the HTTP response to your browser in terms of static

HTML content.

• Finally web browser handles the dynamically generated HTML page inside the HTTP

response exactly as if it were a static page

4. JSP Tags(VTU question VIMP):

JSP tags define java code that is to be executed before the output of a JSP

program is sent to the browser. There are five types of JSP tags:

• Comment Tag

• Declaration statement Tag

• Directive Tag

• Expression Tag

• Scriptlet Tag

Dept of
CSE,CEC

Advanced java and J2EE(15cs553) Page 24

Directive Tag:

A Directive tag opens with <%@ and closes with %>. There are three commonly used

directives.Used to import java packages into JSP program

Example:

<%@ page import = “java.sql.*” %>

Comment Tag:

A comment tag opens with <%-- and closes with --%>, and is followed by a comment that

usually describes the functionality of statements that follow the comment tag.

Example:

<%-- jsp comment tag --%>

Declaration Statement Tag:

A Declaration statement tag opens with <%! and is followed by a Java declaration statements

that define variables, objects, and methods.

Example:

<%!

int a=10;

disp() { }

%>

Expression Tag:

• A JSP expression element contains a scripting language expression that is

evaluated, converted to a String, and inserted where the expression appears in the

JSP file.

• Because the value of an expression is converted to a String, you can use an expression

within a line of text, whether or not it is tagged with HTML, in a JSP file.

• The expression element can contain any expression that is valid according to

the Java anguage Specification but you cannot use a semicolon to end an expression.

Dept of
CSE,CEC

Advanced java and J2EE(15cs553) Page 25

Syntax two forms:

<%= expr %>

example:

<%! int a = 5, b = 10; %>

 <%= a+b %>

Scriptlet Tag:

A scriptlet tag opens with <% and contains commonly used java control statements and

loops. It closes with %>

Syntax two forms:

<% control statements %>

Example:

<% for (int i = 0; i < 2; i++)

 {

out.println(“value of I”+i);

 }

%>

Program to display the grading system for the given java subject marks using control

statements (VTU question VIMP):

<%

int marks=65;

 if(marks>=90)

out.println(“GRADE A”);

else if(marks>=80 && marks<=89)

out.println(“GRADE B”);

else if(marks>=70 && marks<=79)

out.println(“GRADE C”);

else

out.println(“FAIL”);

%>

Dept of
CSE,CEC

Advanced java and J2EE(15cs553) Page 26

6. Request String:

• The browser generates a user request string whenever the submit button is selected.

• The HttpServletRequest parameter Request object has a request scope that is used to

access the HTTP request data, and also provides a context to associate the request-

specific data.

• Request object implements javax.servlet.ServletRequest interface.

• Jsp provides the two ways of request string:

getParameter(String)

getParameterNames()

getParameterValues();

Using request.getParameter()

getParameter() method requires an argument, which is the name of the field whose

value you want to retrieve.

Program: Department has set the grade for java subject,accept the input from the user and

display the grading on the browser. (VTU question VIMP)

above 90-grade A

80-89 grade B

70-79 grade C

below 70 Fail using jsp

A.html

<html>

<body>

<form action=A.jsp>

<input type=”textbox” name=”t1” value=” “>

<input type=”submit” mane=”submit”>

</form>

</body>

</html>

Dept of
CSE,CEC

Advanced java and J2EE(15cs553) Page 27

<%

 %>

A.jsp

String t = request.getParameter(“t1”);

int marks=Integer.parseInt(t);

if(marks>=90)

out.println(“GRADE A”);

else if(marks>=80 && marks<=89)

out.println(“GRADE B”);

else if(marks>=70 && marks<=79)

out.println(“GRADE C”);

else

out.println(“FAIL”)

Dept of
CSE,CEC

Advanced java and J2EE(15cs553) Page 28

using getParameterNames():

getParameterNames()-returns an enumeration of the parameter names. These are processed in

loop

program:

<html>

<body>

<form action=Simple.jsp>

Name:<input type=”textbox” name=”Name” value=” “>

USN:<input type=”textbox” name=”Usn” value=” “>

Marks:<input type=”textbox” name=”Marks” value=” “>

<input type=”submit” mane=”submit”>

</form>

</body>

</html>

 <%@ page import = “java.util.*” %>

<%

Enumeration e=request.getParameterNames();

while(e.hasMoreElements())

{

Sting a=(String)e.nextElement();

String Value=request.getParameter(a);

out.println(“ a”+” ”+value);

}

%>

getParameterValues():

• Returns an array of String objects containing all of the values the given request parameter has, or

null if the parameter does not exist.

• If the parameter has a single value, the array has a length of 1.

• method getParameterValues() will generally came into picture if there is a chance of getting multiple values

for any input parameter, this method will retrieve all of it values and store as string array.

Syntax

String[] values = getParameterValues(“Input Parameter”);

Dept of
CSE,CEC

Advanced java and J2EE(15cs553) Page 29

<html>

<body>

<form action="Simple.jsp" >

 Skills :

 <input type="checkbox" name="t1" value="JAVA">JAVA

 <input type="checkbox" name="t1" value="C++">C++

 <input type="checkbox" name="t1" value="Python">PYTHON

 <input type="submit" value="Submit">

 </form>

</body>

</html>

 Simple.jsp

 <%

 String[] values=request.getParameterValues("t1");

 out.println("Selected Values...");

 for(String a:values)

 out.println(a);

 %>

6. cookies:

• A cookie is a small piece of information created by a JSP program that is stored in

the client’s hard disk by the browser. Cookies are used to store various kind of

information such as username, password, and user preferences, etc.

• Different methods in cookie class are:

1. String getName()- Returns a name of cookie

2. String getValue()-Returns a value of cookie

3. int getMaxAge()-Returns a maximum age of cookie in millisecond

4. String getDomain()-Returns a domain

5. boolean getSecure()-Returns true if cookie is secure otherwise false

6. String getPath()-Returns a path of cookie

7.void setPath(Sting)- set the path of cookie

8.void setDomain(String)-set the domain of cookie

9.void setMaxAge(int)-set the maximum age of cookie

10.void setSecure(Boolean)-set the secure of cookie.

Dept of
CSE,CEC

Advanced java and J2EE(15cs553) Page 30

Creating cookie:

Cookie are created using cookie class constructor.

Content of cookies are added the browser using addCookies() method.

Reading cookies:

Reading the cookie information from the browser using getCookies() method.

Find the length of cookie class.

Retrive the information using different method belongs the cookie class

PROGRAM: To create and read the cookie for the given cookie name as “EMPID”

and its value as”AN2356”.(VTU question VIMP)

JSP program to create a cookie

<%

Cookie c=new Cookie (“EMPID”,”AN2356”);

response.addCookie(c);

Cookie c[]=request.getCookies();

for(i=0;i<c.length;i++)
{

String name=c[i].getName();

String value=c[i].getValue ();

out.println(“name=”+name);

out.println(“value=”+value);

}

%>

Dept of
CSE,CEC

Advanced java and J2EE(15cs553) Page 31

7. Session object(session tracking or session uses)

• The HttpSession object associated to the request

• Session object has a session scope that is an instance of

javax.servlet.http.HttpSession class. Perhaps it is the most commonly used object

to manage the state contexts.

• This object persist information across multiple user connection.

• Created automatically by

• Different methods of HttpSession interface are as follows:

1. object getAttribute(String)-Returns the value associated with the name

passed as argument.

2. long getCreationTime()-Returns the time when session created.

3.String getID()-Returns the session ID

4. long getAccessedTIme()-returns the time when client last made a request

for this session.

5. void setAttribute(String,object)-Associates the values passed in the object

name passed.

Program:

<%

%>

HttpSession h=request.getSesssion(true);

h.setAttribute(“UserName”,”Santosh”);

out.println(“Get session ID”+h.getId());

out.println(“Creation Time”+new Date(h.getCreationTime()));

out.println(“Last Access Time”+new Date(h. getAccessedTIme()));

out.println(“User Name”+h.getAttribute(“UserName”));

Dept of
CSE,CEC

Advanced java and J2EE(15cs553) Page 32

Dept of
CSE,CEC

Advanced java and J2EE(15cs553) Page 33

