
Dept of CSE,CEC Advanced java and J2EE (15CS553) Page 1

Module 5: J2EE and JDBC(database access)

1.Java Database Connectivity (JDBC)

 Java Database Connectivity (JDBC) is an implementation of the Java programming

language that dictates how databases communicate with each other.

 Through a standardized application programming interface (API), connectivity from

database management systems (DBMS) to a wide range of SQL databases is

accomplished.

 By deploying database drivers laced with JDBC technology, it is possible to connect to

any database -- even in a heterogeneous environment -- and access tables, tabular data,

flat files and more.

 When using JDBC, Java programmers have the ability to request connections to a

database, send queries to the database using SQL statements, and receive results for

advanced processing.

2.JDBC Drivers

 To connect with individual databases, JDBC requires drivers for each database.

 The various driver types are described in the following sections:

 Type I: JDBC-ODBC Bridge

Type II: Native API/JAVA

 Type III: Pure Java driver for database middleware(JDBC protocol)

 Type Four Driver : Direct-to-database pure Java driver (JAVA protocol)

Type 1: JDBC-ODBC Bridge Driver

 In a Type 1 driver, a JDBC bridge is used to access ODBC drivers installed on each client

machine. Using ODBC, requires configuring on your system a Data Source Name (DSN)

that represents the target database.

 When Java first came out, this was a useful driver because most databases only supported

ODBC access but now this type of driver is recommended only for experimental use or

when no other alternative is available.

Dept of CSE,CEC Advanced java and J2EE (15CS553) Page 2

 A JDBC/ODBC bridge provides JDBC API access through one or more ODBC drivers.

Some ODBC native code and in many cases native database client code must be loaded

on each client machine that uses this type of driver.

 The advantage for using this type of driver is that it allows access to almost any database

since the database ODBC drivers are readily available.

 Disadvantages for using this type of driver include the following:

 Performance is degraded since the JDBC call goes through the bridge to

the ODBC driver then to the native database connectivity interface. The

results are then sent back through the reverse process

 Limited Java feature set

 May not be suitable for a large-scale application

Type Two Driver:Native API/JAVA protocal

 In a Type 2 driver, JDBC API calls are converted into native C/C++ API calls, which are

unique to the database. These drivers are typically provided by the database vendors and

used in the same manner as the JDBC-ODBC Bridge. The vendor-specific driver must be

installed on each client machine.

 If we change the Database, we have to change the native API, as it is specific to a

database and they are mostly obsolete now, but you may realize some speed increase with

a Type 2 driver, because it eliminates ODBC's overhead.

Dept of CSE,CEC Advanced java and J2EE (15CS553) Page 3

The Oracle Call Interface (OCI) driver is an example of a Type 2 driver.

Advantages for using this type of driver include the following:

 Allows access to almost any database since the databases ODBC drivers are readily

available

 Offers significantly better performance than the JDBC/ODBC Bridge

 Limited Java feature set

Disadvantages for using this type of driver include the following:

 Applicable Client library must be installed

 Type 2 driver shows lower performance than type 3 or 4

Type 3: JDBC-Net pure Java(JDBC PROTOCAL)

 In a Type 3 driver, a three-tier approach is used to access databases. The JDBC clients

use standard network sockets to communicate with a middleware application server. The

socket information is then translated by the middleware application server into the call

format required by the DBMS, and forwarded to the database server.

 This kind of driver is extremely flexible, since it requires no code installed on the client

and a single driver can actually provide access to multiple databases.

Dept of CSE,CEC Advanced java and J2EE (15CS553) Page 4

Advantages for using this type of driver include the following:

 Allows access to almost any database since the databases ODBC drivers are readily

available

 Offers significantly better performance than the JDBC/ODBC Bridge and Type 2 Drivers

 Advanced Java feature set

 Scalable

 Caching

 Advanced system administration

 Does not require applicable database client libraries

The disadvantage for using this type of driver is that it requires a separate JDBC middleware

server to translate specific native-connectivity interface.

Type 4: Pure Java protocal

 In a Type 4 driver, a pure Java-based driver communicates directly with the vendor's

database through socket connection. This is the highest performance driver available for

the database and is usually provided by the vendor itself.

 This kind of driver is extremely flexible, you don't need to install special software on the

client or server. Further, these drivers can be downloaded dynamically.

Dept of CSE,CEC Advanced java and J2EE (15CS553) Page 5

Advantages for using this type of driver include the following:

 Allows access to almost any database since the databases ODBC drivers are readily

available

 Offers significantly better performance than the JDBC/ODBC Bridge and Type 2 Drivers

 Scalable

 Caching

 Advanced system administration

 Superior performance

 Advance Java feature set

 Does not require applicable database client libraries

The disadvantage for using this type of driver is that each database will require a driver

3.A brief overview of the JDBC process:

This process is divided into five steps:

 Loading the jdbc drivers

 Connecting to dbms

 Creating and executing statements

 Processing data returned by dbms

 Terminating the connection with the dbms

Dept of CSE,CEC Advanced java and J2EE (15CS553) Page 6

Loading the JDBC drivers:

 The jdbc must be loaded before the j2ee components can connect to the dbms.

 The Class.forName() method is used to load the jdbc driver and passing it the name of

driver as an arguments to the method.

 code snippet is shown below:

try

{

Class.forName(“sun.jdbc.odbc.JdbcOdbcDriver”);

}

catch(Exception e)

{

S.o.p(e);

}

Connect to the dbms:

 Once driver is loaded, the j2ee components must connect to the dbms using the static

method getConnection().

 Where getConnection() methods belong to class called as DriverManager.

 getConnection() method passed the URL as argument of database and username

,password if necessary to database.Where URL is the string object that contains the driver

name and databse name that is being accessed by the j2ee components.

 DriverManager.getConnection() methods returns a connection interface that is used

throughout the process to reference the database.

 Code snippet is shown below:

try

{

Class.forName(“sun.jdbc.odbc.JdbcOdbcDriver”);

Connection c=DriverManager.getConnection(“JDBC:ODBC:CSB);

}

catch(Exception e)

{

S.o.p(e); }

Dept of CSE,CEC Advanced java and J2EE (15CS553) Page 7

Create and execute sql statements:

 After jdbc driver is loaded and connection is successfully made with the databse.

 Now database is managed by the dbms is to send a sql query to the dbms for processing.

 The createStatement() method is used to create the statement object. The

createStatement() method is belongs to connection interface.

 The return value of createStatement() method is the Statement interface.

 The statement object is used to execute queryand return a resultset interface objectthat

conatains the response from the dbms.

 The different methods are used to execute the query are as follows:

 executeQuery(String)

 ExecuteUpadate(String)

 Execute(string)

Code snippet :

try

{

Class.forName(“sun.jdbc.odbc.JdbcOdbcDriver”);

Connection c=DriverManager.getConnection(“JDBC:ODBC:CSB”);

Statement s=c.createStatement();

ResultSet r=s.executeQuery(“Select *from emp”);

}

catch(Exception e)

{

S.o.p(e);

}

Process data returned by the dbms:

 ResultSet object is assigned to receive the data from the DBMS after the query processed.

 ResultSet object conatins the method used to intract with the data that is returned by

DBMS to the j2ee components.

 Next() method is used to process the data from the DBMS.it is pointing to the first row of

table. Next() method is always used in iterative process.

Dept of CSE,CEC Advanced java and J2EE (15CS553) Page 8

 getString() methods of ResultSet object is used to copy the value of specified columns in

the current row of the ResultSet to a string object.

 The getString() methods is passed the name of the column or column index in the

ResultSet whose content need to be copied.

Code snippet:

try

{

Class.forName(“sun.jdbc.odbc.JdbcOdbcDriver”);

Connection c=DriverManager.getConnection(“JDBC:ODBC:CSB”);

Statement s=c.createStatement();

ResultSet r=s.executeQuery(“Select *from emp”);

while(r.next())

{

String name=r.getString(1);

System.out.println(“name=”+name);

}

catch(Exception e)

{

S.o.p(e);

}

Terminating the connection to the DBMS:

The connection to the dbms is terminated by the close() method of the connection interface once

the j2ee component is finished accessing the dbms.

c.close();

Dept of CSE,CEC Advanced java and J2EE (15CS553) Page 9

program to retrieve the data from the database:

import java.sql.*;

class A

{

A()

{

try

{

Class.forName(“sun.jdbc.odbc.JdbcOdbcDriver”);

Connection c=DriverManager.getConnection(“JDBC:ODBC:CSB”);

Statement s=c.createStatement();

ResultSet r=s.executeQuery(“Select *from emp”);

while(r.next())

{

String name=r.getString(1);

String usn=r.getString(2);

System.out.println(“name=”+name);

System.out.println(“USN=”+usn);

}

c.close();

}

catch(Exception e)

{

S.o.p(e);

}

}

public stataic void main(String ar[])

{

A a1=new A();

}

}

Dept of CSE,CEC Advanced java and J2EE (15CS553) Page 10

4.Import JDBC Packages

 The Import statements tell the Java compiler where to find the classes you reference in

your code and are placed at the very beginning of your source code.

 To use the standard JDBC package, which allows you to select, insert, update, and delete

data in SQL tables, add the following imports to your source code −
import java.sql.* ; // for standard JDBC programs

import java.math.* ; // for BigDecimal and BigInteger support

5.Database connection:
 Connection can be established using the DriverManager.getConnection() method.

 The data source that the jdbc components will connect to is defined using the url format.

The url consist of three parts.

 JDBC-Which indicates that the jdbc protocol is to be used to read the url

 <subprotocal>-which indicates the jdbc driver name

 <subname>- which indicates the name of the database.

 the three overloaded DriverManager.getConnection() methods −

 getConnection(String url)

 getConnection(String url, Properties prop)

 getConnection(String url, String user, String password)

Using Only a Database URL

DriverManager.getConnection() method requires only a database URL −

getConnection(String url)

try

{

Class.forName(“sun.jdbc.odbc.JdbcOdbcDriver”);

Connection c=DriverManager.getConnection(“JDBC:ODBC:CSB”);

}

catch(Exception e)

{

Sysetm.out.println(e);

}

Dept of CSE,CEC Advanced java and J2EE (15CS553) Page 11

Using a Database URL with a username and password

 The most commonly used form of getConnection() requires you to pass a database URL,

a username, and a password:

 Now you have to call getConnection() method with appropriate username and password

to get a Connection object as follows −

 getConnection(String url, String user, String password)

try

{

Class.forName(“sun.jdbc.odbc.JdbcOdbcDriver”);

Connection c=DriverManager.getConnection(“JDBC:ODBC:CSB”,”CSB”,”Tiger”);

}

catch(Exception e)

{

Sysetm.out.println(e);

}

Using a Database URL and a Properties Object

 A third form of the DriverManager.getConnection() method requires a database URL

and a Properties object −
DriverManager.getConnection(String url, Properties info);

 A Properties object holds a set of keyword-value pairs. It is used to pass driver properties

to the driver during a call to the getConnection() method.

try

{

Properties p = new Properties();

FileInputStream f=new FileInputStream(“p1.txt”);

p.load(f);

Class.forName(“sun.jdbc.odbc.JdbcOdbcDriver”);

Connection c=DriverManager.getConnection(“JDBC:ODBC:CSB”, p);

}

catch(Exception e)

{

Sysetm.out.println(e);

}

Dept of CSE,CEC Advanced java and J2EE (15CS553) Page 12

NOTE:just for reference-Following table lists down the popular JDBC driver names and

database URL.

RDBMS JDBC driver name URL format

MySQL com.mysql.jdbc.Driver jdbc:mysql://hostname/ databaseName

ORACLE oracle.jdbc.driver.OracleDriver
jdbc:oracle:thin:@hostname:port

Number:databaseName

DB2 COM.ibm.db2.jdbc.net.DB2Driver jdbc:db2:hostname:port Number/databaseName

Sybase com.sybase.jdbc.SybDriver
jdbc:sybase:Tds:hostname: port

Number/databaseName

Connection conn = DriverManager.getConnection(URL, USER, PASS);

5.The Statement Objects

 Once connection to the databse is opened,the j2ee component creates and sends

a query to access data contained in database.

 There are three ways statement object are used:

 Statement object

 preparedStatemnt object

 callableStatement object

Creating Statement Object

 Before you can use a Statement object to execute a SQL statement, you need to create

one using the Connection object's createStatement() method, as in the following example

Statement s=c.createStatement();

Once you've created a Statement object, you can then use it to execute an SQL statement

with one of its three execute methods.

 boolean execute (String SQL): Returns a boolean value of true if a ResultSet object can

be retrieved; otherwise, it returns false. Use this method to execute SQL DDL statements

or when you need to use truly dynamic SQL.

Dept of CSE,CEC Advanced java and J2EE (15CS553) Page 13

 int executeUpdate (String SQL): Returns the number of rows affected by the execution

of the SQL statement. Use this method to execute SQL statements for which you expect

to get a number of rows affected - for example, an INSERT, UPDATE, or DELETE

statement.

 ResultSet executeQuery (String SQL): Returns a ResultSet object. Use this method

when you expect to get a result set, as you would with a SELECT statement.

Program:

import java.sql.*;

class A

{

A()

{

try

{

Class.forName(“sun.jdbc.odbc.JdbcOdbcDriver”);

Connection c=DriverManager.getConnection(“JDBC:ODBC:CSB”);

Statement s=c.createStatement();

ResultSet r=s.executeQuery(“Select *from emp”);

while(r.next())

{

String name=r.getString(1);

String usn=r.getString(2);

System.out.println(“name=”+name);

System.out.println(“USN=”+usn);

}

c.close();

}

catch(Exception e)

{

S.o.p(e);

}

Dept of CSE,CEC Advanced java and J2EE (15CS553) Page 14

}

Public stataic void main(String ar[])

{

A a1=new A();

}

}

The PreparedStatement Objects

 The PreparedStatement interface extends the Statement interface, which gives you added

functionality with a couple of advantages over a generic Statement object.

 This statement gives you the flexibility of supplying arguments dynamically.

PreparedStatement p=new PreparedStatement(“select name from emp

where usn=?”);

 The setXXX() methods bind values to the parameters, where XXX represents the Java

data type of the value you wish to bind to the input parameter.

o setXXX(int,string);

 First parameter represent the column index and second parameter represent the values

that replace the ? mark in the query.

 Next different execut methods of the preparedStatement object are called.

import java.sql.*;

class A

{

A()

{

try

{

Class.forName(“sun.jdbc.odbc.JdbcOdbcDriver”);

Connection c=DriverManager.getConnection(“JDBC:ODBC:CSB”);

PreparedStatement p=c.PreaparedStatement(“select name from emp where usn=?”);

p.setSting(2, ”12cs001”);

ResultSet r=p.executeQuery();

Dept of CSE,CEC Advanced java and J2EE (15CS553) Page 15

while(r.next())

{

String name=r.getString(1);

String usn=r.getString(2);

System.out.println(“name=”+name);

System.out.println(“USN=”+usn);

}

c.close();

}

catch(Exception e)

{

S.o.p(e);

}

}

public static void main(String ar[])

{

A a1=new A();

}

}

The CallableStatement Objects

 Just as a Connection object creates the Statement and PreparedStatement objects, it also

creates the CallableStatement object, which would be used to execute a call to a database

stored procedure.

 Three types of parameters exist: IN, OUT, and INOUT. The PreparedStatement object

only uses the IN parameter. The CallableStatement object can use all the three.

 Here are the definitions of each −

Parameter Description

IN

A parameter whose value is unknown when the SQL statement is

created. You bind values to IN parameters with the setXXX()

methods.

Dept of CSE,CEC Advanced java and J2EE (15CS553) Page 16

OUT

A parameter whose value is supplied by the SQL statement it returns.

You retrieve values from theOUT parameters with the getXXX()

methods.

INOUT

A parameter that provides both input and output values. You bind

variables with the setXXX() methods and retrieve values with the

getXXX() methods.

 The following code snippet shows how to employ the Connection.prepareCall() method

to instantiate a CallableStatement object based on the preceding stored procedure −

 If you have IN parameters, just follow the same rules and techniques that apply to a

PreparedStatement object; use the setXXX() method that corresponds to the Java data

type you are binding.

 When you use OUT and INOUT parameters you must employ an additional

CallableStatement method, registerOutParameter(). The registerOutParameter() method

binds the JDBC data type, to the data type that the stored procedure is expected to return.

 Once you call your stored procedure, you retrieve the value from the OUT parameter

with the appropriate getXXX() method. This method casts the retrieved value of SQL

type to a Java data type.

Program:
import java.sql.*;

class A

{

A()

{

try

{

Class.forName(“sun.jdbc.odbc.JdbcOdbcDriver”);

Connection c=DriverManager.getConnection(“JDBC:ODBC:CSB”);

CallableStatement p=c.CallableSatement(“Call lastOrderNumber(?)”);

p.registerOutParameter(1,TYPES.VARCHAR);

p.executeQuery();

Dept of CSE,CEC Advanced java and J2EE (15CS553) Page 17

String name=p.getString(1);

System.out.println(“name=”+name);

}

c.close();

}

catch(Exception e)

{

S.o.p(e);

}

}

public stataic void main(String ar[])

{

A a1=new A();

}

}

6. ResultSet
A ResultSet consists of records. Each records contains a set of columns.

A ResultSet can be of a certain type. The type determines some characteristics and abilities of the

ResultSet.

Scrollable ResultSet:

At the time of writing there are three ResultSet types:

1. ResultSet.TYPE_FORWARD_ONLY

2. ResultSet.TYPE_SCROLL_INSENSITIVE

3. ResultSet.TYPE_SCROLL_SENSITIVE

The default type is TYPE_FORWARD_ONLY

 TYPE_FORWARD_ONLY means that the ResultSet can only be navigated forward. That is,

you can only move from row 1, to row 2, to row 3 etc. You cannot move backwards in

the ResultSet.

 TYPE_SCROLL_INSENSITIVE means that the ResultSet can be navigated (scrolled) both

forward and backwards. You can also jump to a position relative to the current position,

Dept of CSE,CEC Advanced java and J2EE (15CS553) Page 18

or jump to an absolute position. The ResultSet is insensitive to changes in the

underlying data source while the ResultSet is open. That is, if a record in the

ResultSet is changed in the database by another thread or process, it will not be

reflected in already opened ResulsSet's of this type.

 TYPE_SCROLL_SENSITIVE means that the ResultSet can be navigated (scrolled) both

forward and backwards. You can also jump to a position relative to the current position,

or jump to an absolute position. The ResultSet is sensitive to changes in the underlying

data source while the ResultSet is open. That is, if a record in the ResultSet is changed

in the database by another thread or process, it will be reflected in already opened

ResulsSet's of this type.

Method Description

absolute() Moves the ResultSet to point at an absolute position. The position is a row

number passed as parameter to the absolute() method.

afterLast() Moves the ResultSet to point after the last row in the ResultSet.

beforeFirst() Moves the ResultSet to point before the first row in the ResultSet.

first() Moves the ResultSet to point at the first row in the ResultSet.

last() Moves the ResultSet to point at the last row in the ResultSet.

next() Moves the ResultSet to point at the next row in the ResultSet.

previous() Moves the ResultSet to point at the previous row in the ResultSet.

relative() Moves the ResultSet to point to a position relative to its current position. The

relative position is passed as a parameter to the relative method, and can be

both positive and negative.

Moves the ResultSet

PROGRAM:
import java.sql.*;

Dept of CSE,CEC Advanced java and J2EE (15CS553) Page 19

class A

{

A()

{

try

{

Class.forName(“sun.jdbc.odbc.JdbcOdbcDriver”);

Connection c=DriverManager.getConnection(“JDBC:ODBC:CSB”);

Statement s=c.createStatement(ResultSet.TPYE_SCROLL_SENSITIVE);

ResultSet r=s.executeQuery(“Select *from emp”);

While(r.next())

{

String name=r.getString(1);

String usn=r.getString(2);

System.out.println(“name=”+name);

System.out.println(“USN=”+usn);

}

r.first();

System.out.println(r.getString(1));

r.last();

System.out.println(r.getString(1));

r.previous();

System.out.println(r.getString(1));

r.absolute(2);

System.out.println(r.getString(1));

r.relative(2);

System.out.println(r.getString(1));

r.relative(-2);

System.out.println(r.getString(1));

c.close();

}

Dept of CSE,CEC Advanced java and J2EE (15CS553) Page 20

catch(Exception e)

{

S.o.p(e);

}

}

public static void main(String ar[])

{

A a1=new A();

}

}

Updatable ResultSet :

 The ResultSet concurrency determines whether the ResultSet can be updated, or only

read.

 A ResultSet can have one of two concurrency levels:

1. ResultSet.CONCUR_READ_ONLY

2. ResultSet.CONCUR_UPDATABLE

 CONCUR_READ_ONLY means that the ResultSet can only be read.

 CONCUR_UPDATABLE means that the ResultSet can be both read and updated.

 If a ResultSet is updatable, you can update the columns of each row in the ResultSet. You

do so using the many updateXXX() methods.

 updateRow() is called that the database is updated with the values of the row

import java.sql.*;

class A

{

A()

{

try

{

Class.forName(“sun.jdbc.odbc.JdbcOdbcDriver”);

Connection c=DriverManager.getConnection(“JDBC:ODBC:CSB”);

Dept of CSE,CEC Advanced java and J2EE (15CS553) Page 21

Statement s=c.createStatement(ResultSet.CONCUR_UPDATABLE);

ResultSet r=s.executeQuery(“Select *from emp where usn=2”);

r.update(1, ”Avinash”);

r.updateRow();

while(r.next())

{

String name=r.getString(1);

String usn=r.getString(2);

System.out.println(“name=”+name);

System.out.println(“USN=”+usn);

}

c.close();

}

catch(Exception e)

{

S.o.p(e);

}

}

public stataic void main(String ar[])

{

A a1=new A();

}

}

Inserting Rows into a ResultSet

If the ResultSet is updatable it is also possible to insert rows into it. You do so by:

1. update row column values using updateXX(string,string);

2. call ResultSet.insertRow()

import java.sql.*;

class A

{

A()

Dept of CSE,CEC Advanced java and J2EE (15CS553) Page 22

{

try

{

Class.forName(“sun.jdbc.odbc.JdbcOdbcDriver”);

Connection c=DriverManager.getConnection(“JDBC:ODBC:CSB”);

Statement s=c.createStatement(ResultSet.CONCUR_UPDATABLE);

ResultSet r=s.executeQuery(“Select *from emp ”);

r.update(1, ”Avinash”);

r.insertRow();

while(r.next())

{

String name=r.getString(1);

String usn=r.getString(2);

System.out.println(“name=”+name);

System.out.println(“USN=”+usn);

}

c.close();

}

catch(Exception e)

{

S.o.p(e);

}

}

public stataic void main(String ar[])

{

A a1=new A();

}

}

Dept of CSE,CEC Advanced java and J2EE (15CS553) Page 23

Deleteing row from a ResultSet:

 Deleterow() method is nused to delete the row from the databse.

 DeleteRow() method pass as an integer argument ,which specify the row to be deleted.

ResultSet.deleteRow(int);

Program:

import java.sql.*;

class A

{

A()

{

Try

{

Class.forName(“sun.jdbc.odbc.JdbcOdbcDriver”);

Connection c=DriverManager.getConnection(“JDBC:ODBC:CSB”);

Statement s=c.createStatement(ResultSet.CONCUR_UPDATABLE);

ResultSet r=s.executeQuery(“Select *from emp ”);

r.deleteRow(0);

while(r.next())

{

String name=r.getString(1);

String usn=r.getString(2);

System.out.println(“name=”+name);

System.out.println(“USN=”+usn);

}

c.close();

}

catch(Exception e)

{

S.o.p(e);

}

}

Dept of CSE,CEC Advanced java and J2EE (15CS553) Page 24

public static void main(String ar[])

{

A a1=new A();

}

}

7.Transactions
 A transaction is a set of actions to be carried out as a single, atomic action. Either all of the

actions are carried out, or none of them are.

 Transaction is successfully completed only if each task is comleted successfully. If one of task is

fail, the entire transaction is fail.

 If one of sql is failed, the sql statement that is executed successfully upto the point in the

transaction must be rollback.

 Different methods of Transaction processing are:

 setAutoCommit(boolean)-setAutoCommit() pass the parameter as false intial once all

the transcation is completed. As soon as it invokes the commit() ,the setAutoCommit()

method is set as true.

 setSavePoint(String);-set the save point to the sql statement .

 releaseSavePoint(String);-it realse the save point assing to the sql statement if and only

if all sql statement are executed successfully.

 commit();-once all sql statement are executed successfully,rollback is not possible.

 rollback();-if one of the sql statement is failed,then rollback() method is invoked and

control goes back to the fail sql statement for further execution.

Program:

import java.sql.*;

class A

{

A()

{

try

{

Class.forName(“sun.jdbc.odbc.JdbcOdbcDriver”);

Dept of CSE,CEC Advanced java and J2EE (15CS553) Page 25

Connection c=DriverManager.getConnection(“JDBC:ODBC:CSB”);

Statement s=c.createStatement();

c.setAutoCommit(false);

c.setSavePoint(“csb”);

ResultSet r=s.executeQuery(“Select *from emp where usn=2”);

r=s.executeQuery(“Select *from emp”);

c.releaseSavePoint(“csb”);

c.commit();

}

c.close();

}

catch(Exception e)

{

S.o.p(e);

c.rollback();

}

}

public static void main(String ar[])

{

A a1=new A();

}

}

8.Metadata:

Metadata is data about data. J2ee component can access metadata by using

 DatabaseMetaData interface.

 ResultSetMetaData interface

DatabaseMetaData interface:

 The DatabaseMetaData interface is used to retrieve information about database,table,columns

and index amoung other information about dbms.

Dept of CSE,CEC Advanced java and J2EE (15CS553) Page 26

 J2ee component retrives metadata about the database by calling getMetaData() method of the

connection interface object. The getMetaData() method return a DatabaseMetaData object that

contain information of database and components.

 Most commonly used DatabaseMetaData interface methods as follows:

 getDataBaseProductName()- returns the product name of the database.

 getUserName()-returns the username of database

 getURL()- returns the URL of the database

 getSchemas()-returns the all schemas of the database which are available

 getPrimaryKeys()-returns the primary key available in the database

 getTables()-returns the table name in the database

program:

import java.sql.*;

class A

{

A()

{

try

{

Class.forName(“sun.jdbc.odbc.JdbcOdbcDriver”);

Connection c=DriverManager.getConnection(“JDBC:ODBC:CSB”);

Statement s=c.createStatement();

ResultSet r=s.executeQuery(“Select *from emp”);

DatabaseMetaData d=c.getMetaData();

System.out.println(d.getUserNAme());

System.out.println(d.getTables());

System.out.println(d.getURL());

}

c.close();

}

catch(Exception e)

{

Dept of CSE,CEC Advanced java and J2EE (15CS553) Page 27

S.o.p(e);

}

}

public static void main(String ar[])

{

A a1=new A();

}

}

ResultSetMetaData interface:

 ResultSetMetaData interface is used to retrieve the information by calling the getMetaData()

method of ResultSet interface.

 Different methods in the ResultSetMetaData inetface are as follows:

 getColunmCount()-returns the number of column available in the table

 getColunmName(int)-returns the name of column specified by the column

number

 getColunmTye(int)-returns the type of column specified by the column number

program:

import java.sql.*;

class A

{

A()

{

try

{

Class.forName(“sun.jdbc.odbc.JdbcOdbcDriver”);

Connection c=DriverManager.getConnection(“JDBC:ODBC:CSB”);

Statement s=c.createStatement();

ResultSet r=s.executeQuery(“Select *from emp”);

ResultSetMetaData d=r.getMetaData();

System.out.println(d.getColunmName(1));

Dept of CSE,CEC Advanced java and J2EE (15CS553) Page 28

System.out.println(d.getColunmCount());

System.out.println(d.getColunmType(1));

}

c.close();

}

catch(Exception e)

{

S.o.p(e);

}

}

public static void main(String ar[])

{

A a1=new A();

}

}

Data Types:

The JDBC driver converts the Java data type to the appropriate JDBC type, before sending it to the

database. It uses a default mapping for most data types. The following table summarizes the default

JDBC data type that the Java data type is converted to, when you call the setXXX() method.

SQL JDBC/Java

VARCHAR String

CHAR String

LONGVARCHAR String

BIT boolean

NUMERIC java.math.BigDecimal

TINYINT byte

SMALLINT short

INTEGER int

BIGINT long

REAL float

FLOAT float

DOUBLE double

Dept of CSE,CEC Advanced java and J2EE (15CS553) Page 29

VARBINARY byte[]

BINARY byte[]

DATE java.sql.Date

TIME java.sql.Time

TIMESTAMP java.sql.Timestamp

CLOB java.sql.Clob

BLOB java.sql.Blob

Exception :

SQLException Methods

An SQLException can occur both in the driver and the database. When such an exception occurs,
an object of type SQLException will be passed to the catch clause.

The passed SQLException object has the following methods available for retrieving additional
information about the exception −

Method Description

getErrorCode() Gets the error number associated with the exception.

getMessage()
Gets the JDBC driver's error message for an error,
handled by the driver or gets the Oracle error number
and message for a database error.

getSQLState()

Gets the XOPEN SQLstate string. For a JDBC driver
error, no useful information is returned from this
method. For a database error, the five-digit XOPEN
SQLstate code is returned. This method can return null.

getNextException() Gets the next Exception object in the exception chain.

printStackTrace()
Prints the current exception, or throwable, and it's
backtrace to a standard error stream.

printStackTrace(PrintStream s)
Prints this throwable and its backtrace to the print
stream you specify.

printStackTrace(PrintWriter w)
Prints this throwable and it's backtrace to the print
writer you specify.

