unit 6: INPUT MODELING
6. INPUT MODELING
e Input data provide the driving force for a simulation model. In the simulation of a queuing
system, typical input data are the distributions of time between arrivals and servicetimes.
e For the simulation of a reliability system, the distribution of time-to=failure of a
component is an example of input data.

Therearefour stepsin the development of a useful model of input data:

e Collect data from the real system of interest. This often requires a substantial time and
resource commitment. Unfortunately, in some situations it is not possible to collect data

e Identify a probability distribution to represent the input process. When data are
available, this step typically begins by developing a frequency distribution, or histogram,
of the data.

e Choose parameters that determine a specific instance of the distribution family.
When data are avail able, these parameters may be estimated from the data.

e Evauate the chosen distribution and the associated parameters for good-of- fit.
Goodness-of-fit may be evaluated informally via graphical methods, or formally via
statistical tests. The chisquare and the Kolmo-gorov-Smirnov tests are standard
goodness-of-fit tests. If not satisfied that the chosen distribution is a good approximation
of the data, then the analyst returns to the second step, chooses a different family of
distributions, and repeats the procedure. If several iterations of this procedure fail to yield
afit between an assumed distributional form and the collected data

6.1 Data Collection
e Data collection is one of the biggest tasks in solving real problem. It is one of the most

important and difficult problems in simulation. And even if when data are available, they

have rarely been recorded in aform that is directly useful for simulation input modeling.




The following suggestions may enhance and facilitate data collection, athough they are not
al —inclusive.
1 A useful expenditure of timeisin planning. This could begin by a practice or

pre observing session. Try to collect data while pre-observing.

2. Try to analyze the data as they are being collected. Determine if any data being
collected are useless to the ssmulation. There is no need to collect superfluous
data.

3. Try to combine homogeneous data sets. Check data for homogeneity in

successive time periods and during the same time period on successive days.

4. Be aware of the possibility of data censoring, in which a quantity of interest is
not observed in its entirety. This problem most often occurs when the analyst is
interested in the time required to complete some process (for example, produce
apart, treat a patient, or have a component fail), but the process begins prior to,

or finishes after the completion of, the observation period.

5. To determine whether there is a relationship between two variables, build a
scatter diagram.
6. Consider the possibility that a sequence of observations which appear to be

independent may possess autocorrelation. Autocorrelation may exist in
successive time periods or for successive customers.

7. Keep in mind the difference between input data and output or performance
data, and be sure to collect input data. Input data typicaly represent the
uncertain quantities that are largely beyond the control of the system and will
not be altered by changes made to improve the system.

6.2 ldentifying the Distribution with Data.

e In this section we discuss methods for selecting families of input distributions when data

are available.

6.2.1 Histogram

e A frequency distribution or histogram is useful in identifying the shape of a distribution.
A histogram is constructed as follows:

1. Divide the range of the data into intervals (intervals are usualy of equal width;
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however, unequal widths however, unequal width may be used if the heights of the
frequencies are adjusted).

Label the horizontal axisto conform to the intervals sel ected.

Determine the frequency of occurrences within each interval.

Label the vertical axis so that the total occurrences can be plotted for each interval.

a W N

Plot the frequencies on the vertical axis.

e |If the intervals are too wide, the histogram will be coarse, or blocky, and its shape and
other details will not show well. If the intervals are too narrow, the histogram will be
ragged and will not smooth the data.

e The histogram for continuous data corresponds to the probability density function of a
theoretical distribution.

Example 6.2 : The number of vehicles arriving at the northwest corner of an intersectionin ab
min period between 7 A.M. and 7:05 A.M. was monitored for five workdays over a 20-week
period. Table shows the resulting data. The first entry in the table indicates that there were 12:5
min periods during which zero vehicles arrived, 10 periods during which one vehicles arrived,

and so on,

Table 6:1 Number of Arrivalsin a5 Minute period

Armivals Amivals
Per period Frequency Per Period Frequency
0 12 6 7
1 10 7 5
2 19 8 5
3 17 9 3
4 10 10 3
5 8 11 1
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Fig 6.2 Histogram of number of arrivals per period.

6.2.2 Selecting the Family of Distributions

e Additionally, the shapes of these distributions were displayed. The purpose of preparing
histogram is to infer a known pdf or pmf. A family of distributions is selected on the
basis of what might arise in the context being investigated along with the shape of the
histogram.

e Thus, if interarrival-time data have been collected, and the histogram has a shape similar

to the pdf in Figure 5.9.the assumption of an exponential distribution would be warranted.

e Similarly, if measurements of weights of pallets of freight are being made, and the
histogram appears symmetric about the mean with a shape like that shown in Fig 5.12,
the assumption of anormal distribution would be warranted.

e The exponential, normal, and Poisson distributions are frequently encountered and are
not difficult to analyze from a computational standpoint. Although more difficult to
anayze, the gamma and Weibull distributions provide array of shapes, and should not be
overlooked when modeling an underlying probabilistic process. Perhaps an exponential
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distribution was assumed, but it was found not to fit the data. The next step would be to

examine where the lack of fit occurred.

e |If the lack of fit was in one of the tails of the distribution, perhaps a gamma or Weibull
distribution would more adequately fit the data.

e Literally hundreds of probability distributions have been created, many with some
specific physical process in mind. One aid to selecting distributions is to use the physical

basis of the distributions as a guide. Here are some examples:

6.2.3 Quantile-Quantile Plots

e Further, our perception of the fit depends on widths of the histogram intervals. But even
if the intervals are well chosen, grouping of data into cells makes it difficult to compare a
histogram to a continues probability density function

e If X isarandom variable with cdf F, then the g-quintile of X is that y such that F(y) =
P(X <y)=q, for 0<qg< 1. When F has an invererse, we write y = F-1(q).

e Now let {Xi, i =1, 2,...,n} be asample of data from X. Order the observations from
the smallest to the largest, and denote these as {yj, ] =1,2 ,,,n}, whereyl <y2 < ..... <

yn- Let j denote the ranking or order number. Therefore, | = 1 for the smallest and j = n

for the largest. The g-g plot is based on the fact that y1 is an estimate of the (j — 1/2)/n
quantile of X other words,

J-"%
Y] is approximately F™ [T]

* Now suppose that we have chosen a distribution with cdf F as a possible representation of

the distribution of X. If F is a member of an appropriate family of distributions, then a

plot of yj versus F'l((j —1/2)/n) will be approximately a straight line.




6.3 Parameter Estimation
e After a family of distributions has been selected, the next step is to estimate the
parameters of the distribution. Estimators for many useful distributions are described in

this section. In addition, many software packages—some of them integrated into

simulation languages—are now available to compute these estimates.

6.3.1 Preliminary Statistics: Sample Mean and Sample Variance

e In anumber of instances the sample mean, or the sample mean and sample variance, are
used to estimate of the parameters of hypothesized distribution;

e |If the observations in a sample of size n are X1, X2,..., Xn, the sample mean ( X) is
defined by

= 9 1

and the sample variance, 32 is defined by

Zni=1 XIE - II-XE

Si=
n-l

If the data are discrete and grouped in frequency distribution, Equation (9.1) and (.2) can
be modified to provide for much greater computational efficiency, The sample mean can be

computed by

_ rnfiX
X~ 9.
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And the sample variance by

zkal f]X_l2 q §2
X= 94
n -1

where k is the number of distinct values of X and fj is the observed frequency of the value Xj, of
X.

6.3.2 Suggested Estimators

e Numerical estimates of the distribution parameters are needed to reduce the family of
distributions to a specific distribution and to test the resulting hypothesis.

e These estimators are the maximum-likelihood estimators based on the raw data. (If the
dataarein classintervals, these estimators must be modified.)

e The triangular distribution is usually employed when no data are available, with the
parameters obtained from educated guesses for the minimum, most likely, and maximum
possible value's; the uniform distribution may also be used in this way if only minimum

and maximum values are available.

Distribution
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6.4 Goodness-of-Fit_Tests

e These two tests are applied in this section to hypotheses about distributional forms of
input data. Goodness-of-fit tests provide help full guidance for evaluating the suitability
of apotentia input model.

e However, since there is no single correct distribution in areal application, you should not
be aslave to the verdict of such tests.

e |t is especialy important to understand the effect of sample size. If very little data are
available, then a goodness-of-fit test is unlikely to rgject any candidate distribution; but if
a lot of data are available, then a goodness-of-fit test will likely regject al candidate
distribution.

6.4.1 Chi-Square Test

e One procedure for testing the hypothesis that a random sample of size n of the random
variable X follows a specific distributional form is the chi-square goodness-offit test.

e Thistest formalizes the intuitive idea of comparing the histogram of the data to the shape
of the candidate density or mass function, The test is valid for large sample sizes, for both
discrete and continuous distribution assumptions, When parameters are estimated by

maximum likelihood.

k| O1 - Ei)2 016
X[]A: Z - .
I=1 Ei

e where O, is the observed frequency in the ith class interval and Ei, is the expected
frequency in that class interval. The expected frequency for each class interval is computed
as Ei=npi, where pf is the theoretical, hypothesized probability associated with the ith class
interval.

e |t can be shown thatX02 approximately follows the chi-square distribution with k-s-1
degrees of freedom, where s represents the number of parameters of the hypothesized
distribution estimated by sample statistics. The hypotheses are :
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HO: the random variable, X, conforms to the distributiona assumption with the

parameter(s) given by the parameter estimate(s)
H1 : the random variable X does not conform

e |If the distribution being tested is discrete, each value of the random variable should be a
class interval, unless it is necessary to combine adjacent class intervals to meet the
minimum expected cell-frequency requirement. For the discrete case, if combining

adjacent cellsis not required,
Pi = P(X|) = P(X Xj)
Otherwise, pi, is determined by summing the probabilities of appropriate adjacent cells.

e If the distribution being tested is continuous, the class intervals are given by [&j-1,a),
, Where ai-1 and al, are the endpoints of the ith class interval. For the continuous case

with assumed pdf f(x), or assumed cdf F(x), pi, can be computed By
Pi= &i-1 f(x) dx= F(ai) - F(ai -1)

6.4.2 Chi-Square Test with Equal Probabilities

e |If a continuous distributional assumption is being tested, class intervals that are equal in
probability rather than equal in width of interval should be used.
e Unfortunately, there is as yet no method for deter mining the; probability associated with

each interval that maximize the; power of atest o f agiven size.

Ei=npi 5
e Substituting for pi yields nk 5
e and solving for k yields k n/5




6.4.3 Kolmogorov - Smirnov Goodness-of-Fit Test

e The chi-sguare goodness-of-fit test can accommodate the estimation of parameters from
the data with a resultant decrease in the degrees of freedom (one for J each parameter
estimated). The chi-square test requires that the data be placed in class intervals, and in
the case of continues distributional assumption, this grouping is arbitrary.

e Also, the distribution of the chi-square test statistic is known only approximately, and the
power of the test is sometimes rather low. As a result of these considerations, goodness-

of-fit tests, other than the chi-square, are desired.

e The Kolmogorov-Smirnov test is particularly useful when sample sizes are small and

when no parameters have been estimated from the data.

e ( Kolmogoro-Smirnov Test for Exponential Distribution)

Ho : the interarrival times are exponentially distributed
H1: the interarrival times are not exponentially distributed

e The data were collected over the interval 0 to T = 100 min. It can be shown that if the

underlying distribution of interarrival times { T1, T2, ... } is exponentia, the arrival
times are uniformly distributed on the interval (O,T).
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e The arriva times T1, T1+T2, T1+T2+T3,.....,T1+....+T50 are obtained by
adding interarrival times.
e Ona(0,1) interva, the pointswill be [TL/T, (T1+T2)/T,.....,(T1+....+T50)/T].

6.5 Selecting Input Models without Data

Unfortunately. it is often necessary in practice to develop a simulation model
for demonstration purposes or a preliminary study—before any i data are available.) In this
case the modeler must be resourceful in choosing input models and must carefully check

the sensitivity of results to the models.

Engineering data : Often a product or process has performance ratings pro vided by the
manufacturer.

Expert option : Talk to people who are experienced with the procesws or similar
processes. Often they can provide optimistic, pessimistic and most likely
times.

Physical or conventional limitations : Most rea processes have physical limit on
performance. Because of company policies, there may be upper limits on
how long a process may take. Do not ignore obvious limits or bound: that
narrow the range of the input process.

The natur e of the process It can be used to justify a particular choice even when no data
areavailable.

6.6 Multivariateand Time-Series|nput M odels

The random variables presented were considered to be independent of any other variables

within the context of the problem. However, variables may be related, and if the variables

appear in a simulation model as inputs, the relationship should be determined and taken into
consideration.

Step 1. Generate Z; and 7». independent standard normal random variables.

S'M]J:. Set X, = i 4+ mZy

Step 3. SetXp = 2 + o2 (,ﬂz1 T \.-"Il - ,DE.?.'_:-)
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6.7 Time seriesinput model:

If X1,X2..Xn isasequence of identically distributed,but dependent and convarianc stationary
random variables,then there are a number of times series model that can be used to represent the
process. The two models that have the characteristics that the autocorrelatrion take the form.

O = corr( X, Xen) = g

for h=1,2,..n that the log-h autocorrelation decreases geometrically as the lag increases.
AR(1) Modd:
consider the time series model
Xi=p+ X1 —p)+&
for t=2,3,..n where €2, €3 are the independent and identically distributed with men 0 and variance
0% and -1< ¢<1. If the initial value x1 is chosen appropriately,then x1,x2..are all normal

distributed with mean u and variance @2/(1 = #°).

Beep 1. Generate X from the normal distribution with mean i and variance :'.rfffl — g2, Sett = 2.

Mep 2. Generate &, from the normal distribution with mean 0 and

variance a2,
Beep 3, Set X; = i + (X, | — M)+ &
Mepd. Setr=1+1and go to Step 2.
EAR(1) Modd:
Consider thetime series model
X, = { BXiy, with probability ¢
©Xi-1 + £, with probability 1 — ¢

for t=2,3,..n where €2, €3 are the independent and identically distributed with mean 1/4 and 0<
¢<1. If the initial value x1 is chosen appropriately, then x1,x2.. are all exponentially distributed

with mean 1/ and variance @: /(1 — ¢").
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Step 1.
Step 2.

Step 3.

CGenerate X from the exponential distribution with mean 1 /5. Setr = 2.

Generate U from the uniform distribution on [0, 1]. If 7 = &, then set
X=X

Otherwise, generate £, from the exponential distribution with mean 1/4 and set

K =¢X 1+ &

Setr =1+ 1 and go to Step 2.
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