
UNIT 5:Random number generation And Variation Generation

RANDOM-NUMBER GENERATION Random numbers are a necessary basic ingredient in the

simulation of almost all discrete systems. Most computer languages have a subroutine, object, or function

that will generate a random number. Similarly simulation languages generate random numbers that are

used to generate event times and other random variables.

5.1 Properties of Random Numbers A sequence of random numbers, R1, R2... must have two

important statistical properties, uniformity and independence. Each random number Ri, is an independent

sample drawn from a continuous uniform distribution between zero and 1.

That is, the pdf is given by

The density function is shown below:

Some consequences of the uniformity and independence properties are the following:

1. If the interval (0, 1) is divided into n classes, or subintervals of equal length, the expected number of

observations m each interval ii N/n where A' is the total number of observations.

2. The probability of observing a value in a particular interval is of the previous values drawn.

5.2 Generation of Pseudo-Random Numbers

Pseudo means false, so false random numbers are being generated. The goal of any generation scheme, is

to produce a sequence of numbers between zero and 1 which simulates, or initiates, the ideal properties of

uniform distribution and independence as closely as possible. When generating pseudo-random numbers,

certain problems or errors can occur. These errors, or departures from ideal randomness, are all related to

the properties stated previously. Some examples include the following

1) The generated numbers may not be uniformly distributed.

2) The generated numbers may be discrete -valued instead continuous valued

3) The mean of the generated numbers may be too high or too low.

4) The variance of the generated numbers may be too high or low

5) There may be dependence.

The following are examples:

a) Autocorrelation between numbers.

b) Numbers successively higher or lower than adjacent numbers.

c) Several numbers above the mean followed by several numbers below the mean.

Usually, random numbers are generated by a digital computer as part of the simulation. Numerous

methods can be used to generate the values. In selecting among these methods, or routines, there are a

number of important considerations.

1. The routine should be fast. The total cost can be managed by selecting a computationally efficient

method of random-number generation.

2. The routine should be portable to different computers, and ideally to different programming languages

.This is desirable so that the simulation program produces the same results wherever it is executed.

3. The routine should have a sufficiently long cycle. The cycle length, or period, represents the length of

the random-number sequence before previous numbers begin to repeat themselves in an earlier order.

Thus, if 10,000 events are to be generated, the period should be many times that long.

A special case cycling is degenerating. A routine degenerates when the same random numbers appear

repeatedly. Such an occurrence is certainly unacceptable. This can happen rapidly with some methods.

4. The random numbers should be replicable. Given the starting point (or conditions), it should be

possible to generate the same set of random numbers, completely independent of the system that is being

simulated. This is helpful for debugging purpose and is a means of facilitating comparisons between

systems.

5. Most important, and as indicated previously, the generated random numbers should closely

approximate the ideal statistical properties of uniformity and independences

5.3 Techniques for Generating Random Numbers

5.3.1 The linear congruential method

It widely used technique, initially proposed by Lehmer [1951], produces a sequence of integers, X1,

X2,... between zero and m — 1 according to the following recursive relationship:

Xi+1 = (aXi + c) mod m, i = 0, 1, 2.... (7.1)

The initial value X0 is called the seed, a is called the constant multiplier, c is the increment, and m is the

modulus.

If c ≠ 0 in Equation (7.1), the form is called the mixed congruential method. When c = 0, the form is

known as the multiplicative congruential method.

The selection of the values for a, c, m and X0 drastically affects the statistical properties and the cycle

length. An example will illustrate how this technique operates.

EXAMPLE 1 Use the linear congruential method to generate a sequence of random numbers with X0 =

27, a= 17, c = 43, and m = 100.

Here, the integer values generated will all be between zero and 99 because of the value of the modulus.

These random integers should appear to be uniformly distributed the integers zero to 99.

Random numbers between zero and 1 can be generated by

Ri =Xi/m, i= 1,2,…… (7.2)

The sequence of Xi and subsequent Ri values is computed as follows:

X0 = 27

X1 = (17*27 + 43) mod 100 = 502 mod 100 = 2 R1=2/100=0. 02

X2 = (17*2 + 43) mod 100 = 77 mod 100 = 77 R2=77 /100=0. 77

X3 = (17*77+ 43) mod 100 = 1352 mod 100 = 52 R3=52 /100=0. 52

Second, to help achieve maximum density, and to avoid cycling (i.e., recurrence of the same sequence of

generated numbers) in practical applications, the generator should have the largest possible period.

Maximal period can be achieved by the proper choice of a, c, m, and X0.

The max period (P) is:

 For m a power of 2, say m = 2b, and c ¹≠0, the longest possible period is P = m = 2b, which is

achieved provided that c is relatively prime to m (that is, the greatest common factor of c and m is 1),

and a = 1 + 4k, where k is an integer.

 For m a power of 2, say m = 2b, and c = 0, the longest possible period is P = m / 4 = 2b-2, which

is achieved provided that the seed X0 is odd and the multiplier, a, is given by a = 3 + 8k or a = 5 + 8k,

for some k = 0, 1,...

 For m a prime number and c = 0, the longest possible period is P = m - 1, which is achieved

provided that the multiplier, a, has the property that the smallest integer k such that ak - 1 is divisible

by m is

k = m – 1.

Multiplicative Congruential Method:

Basic Relationship:

Xi+1 = a Xi (mod m), where a ≥ 0 and m ≥ 0 … (7.3)

Most natural choice for m is one that equals to the capacity of a computer word. m = 2b (binary

machine), where b is the number of bits in the computer word.

m = 10d (decimal machine), where d is the number of digits in the computer word.

EXAMPLE 1: Let m = 102 = 100, a = 19, c = 0, and X0 = 63, and generate a sequence c random

integers using Equation

Xi+1 = (aXi + c) mod m, i = 0, 1, 2....

X0 = 63 X1 = (19)(63) mod 100 = 1197 mod 100 = 97

X2 = (19) (97) mod 100 = 1843 mod 100 = 43

X3 = (19) (43) mod 100 = 817 mod 100 = 17

When m is a power of 10, say m = 10b, the modulo operation is accomplished by saving the b rightmost

(decimal) digits.

5.3.2 Combined Linear Congruential Generators

As computing power has increased, the complexity of the systems that we are able to simulate has also

increased. One fruitful approach is to combine two or more multiplicative congruential generators in such a way

that the combined generator has good statistical properties and a longer period. The following result from

L'Ecuyer [1988] suggests how this can be done: If Wi,1, Wi,2 ,... , Wi,k are any independent, discrete-valued random

variables (not necessarily identically distributed), but one of them, say Wi,1, is uniformly distributed on the integers

0 to mi — 2, then

is uniformly distributed on the integers 0 to mi — 2. To see how this result can be used to form combined

generators, let Xi,1, Xi,2,..., X i,k be the i th output from k different multiplicative congruential generators, where the

j th generator has prime modulus mj, and the multiplier aj is chosen so that the period is mj — 1. Then the j'th

generator is producing integers Xi,j that are approximately uniformly distributed on 1 to mj - 1, and Wi,j = X i,j — 1 is

approximately uniformly distributed on 0 to mj - 2. L'Ecuyer [1988] therefore suggests combined generators of the

form

5.4 Tests for Random Numbers

1. Frequency test. Uses the Kolmogorov-Smirnov or the chi-square test to compare the distribution

of the set of numbers generated to a uniform distribution.

2. Autocorrelation test. Tests the correlation between numbers and compares the sample

correlation to the expected correlation of zero.

5.4.1 Frequency Tests

A basic test that should always be performed to validate a new generator is the test of

uniformity. Two different methods of testing are available.

1. Kolmogorov-Smirnov(KS test) and

2. Chi-square test.

• Both of these tests measure the degree of agreement between the distribution of a sample of

generated random numbers and the theoretical uniform distribution.

• Both tests are on the null hypothesis of no significant difference between the sample distribution

and the theoretical distribution.

1. The Kolmogorov-Smirnov test. This test compares the continuous cdf, F(X), of the uniform

distribution to the empirical cdf, SN(x), of the sample of N observations. By definition,

F(x) = x, 0 ≤ x ≤ 1

If the sample from the random-number generator is R1 R2, ,..., RN, then the empirical cdf, SN(x), is

defined by

The Kolmogorov-Smirnov test is based on the largest absolute deviation between F(x) and SN(X) over the

range of the random variable. That is. it is based on the statistic D = max |F(x) -SN(x)| For testing

against a uniform cdf, the test procedure follows these steps:

Step 1: Rank the data from smallest to largest. Let R (i) denote the i th smallest observation, so that

R(1) ≤ R(2) ≤ … ≤ R(N)

Step 2: Compute

Step 3: Compute D = max (D+, D-).

Step 4: Determine the critical value, Dα, from Table A.8 for the specified significance level α and the

given sample size N.

Step 5:

We conclude that no difference has been detected between the true distribution of {R1, R2,... RN} and the

uniform distribution.

EXAMPLE 6: Suppose that the five numbers 0.44, 0.81, 0.14, 0.05, 0.93 were generated, and it is

desired to perform a test for uniformity using the Kolmogorov-Smirnov test with a level of significance α

of 0.05.

Step 1: Rank the data from smallest to largest. 0.05, 0.14, 0.44, 0.81, 0.93

Step 2: Compute D+ and D-

Step3: Compute D = max (D+, D-)

. D=max (0.26, 0.21) = 0.26

Step 4: Determine the critical value, Dα, from Table A.8 for the specified significance level α and the

given sample size N. Here α=0.05, N=5 then value of Dα = 0.565

Step 5: Since the computed value, 0.26 is less than the tabulated critical value, 0.565,

the hypothesis of no difference between the distribution of the generated numbers and the uniform

distribution is not rejected.

compare F(x) with Sn(X)

2. The chi-square test.

The chi-square test uses the sample statistic

Where, Oi is observed number in the i th class

Ei is expected number in the i th class,

N – No. of observation

n – No. of classes

Note: sampling distribution of approximately the chi square has n-1 degrees of freedom

Example 7: Use the chi-square test with α = 0.05 to test whether the data shown below are uniformly

distributed. The test uses n = 10 intervals of equal length, namely [0, 0.1), [0.1, 0.2)... [0.9, 1.0).

(REFER TABLE A.6)

5.4.2 Tests for Auto-correlation

The tests for auto-correlation are concerned with the dependence between numbers in a sequence. The list

of the 30 numbers appears to have the effect that every 5th number has a very large value. If this is a

regular pattern, we can't really say the sequence is random.

The test computes the auto-correlation between every m numbers (m is also known as the lag) starting

with the ith number. Thus the autocorrelation
ρ

im between the following numbers would be of interest.

EXAMPLE : Test whether the 3rd, 8th, 13th, and so on, numbers in the sequence at the beginning of this

section are auto correlated. (Use a = 0.05.) Here, i = 3 (beginning with the third number), m = 5 (every

five numbers), N = 30 (30 numbers in the sequence), and M = 4 (largest integer such that 3 + (M +1)5 <

30).

Solution:

2.Random Variate Generation TECHNIQUES:

• INVERSE TRANSFORMATION TECHNIQUE

• ACCEPTANCE-REJECTION TECHNIQUE

All these techniques assume that a source of uniform (0,1) random numbers is available R1,R2….. where

each R1 has probability density function and cumulative distribution function.

Note: The random variable may be either discrete or continuous.

2.1 Inverse Transform Technique The inverse transform technique can be used to sample

from exponential, the uniform, the Weibull and the triangle distributions.

2.1.1 Exponential Distribution The exponential distribution, has probability density function (pdf)

given by

and cumulative distribution function (cdf) given by

The parameter λ can be interpreted as the mean number of occurrences per time unit. For example, if interarrival

times X1, X2, X3 . . . had an exponential distribution with rate, and then could be interpreted as the mean number of

arrivals per time unit, or the arrival rate. For any i,

E(Xi)= 1/λ

And so 1/λ is mean inter arrival time. The goal here is to develop a procedure for generating values X1, X2,

X3 . . . which have an exponential distribution.

The inverse transform technique can be utilized, at least in principle, for any distribution. But it is most

useful when the cdf. F(x), is of such simple form that its inverse, F-1, can be easily computed.

A step-by-step procedure for the inverse transform technique illustrated by me exponential

distribution, is as follows:

Step 1: Compute the cdf of the desired random variable X. For the exponential distribution, the cdf is

F(x) = 1-e-λ x , x≥0.

Step 2: Set F(X) = R on the range of X. For the exponential distribution, it becomes

1 – e-λ X = R on the range x ≥ 0.

Since X is a random variable (with the exponential distribution in this case), so 1-e-λx
is also a random

variable, here called R. As will be shown later, R has a uniform distribution over the interval (0,1).,

Step 3: Solve the equation F(X) = R for X in terms of R. For the exponential distribution, the solution

proceeds as follows:

Equation (5.1) is called a random-variate generator for the exponential distribution. In general, Equation

(5.1) is written as X=F-1(R). Generating a sequence of values is accomplished through steps 4.

Step 4: Generate (as needed) uniform random numbers R1, R2, R3,... and compute the desired random

variates by

Xi = F
-1 (Ri)

For the exponential case, F-1 (R) = (-1/λ)ln(1- R) by Equation (5.1),

so that Xi = -1/λ ln (1 – Ri) …(5.2) for i = 1,2,3,.... One simplification that is usually employed in

Equation (5.2) is to replace 1 – Ri by Ri to yield Xi = -1/λ ln Ri …(5.3) which is justified since both Ri

and 1- Ri are uniformly distributed on (0,1).

Example: consider the random number As fellows, where λ=1

Solution:

Using equation compute Xi

Uniform Distribution :
Consider a random variable X that is uniformly distributed on the interval [a, b]. A reasonable guess
for generating X is given by

X = a + (b - a)R ……….5.5

[Recall that R is always a random number on (0,1).

The pdf of X is given by

f (x) = 1/ (b-a), a ≤ x ≤ b
0, otherwise

The derivation of Equation (5..5) follows steps 1 through 3 of Section 5.1.1:

Step 1. The cdf is given by

F(x) = 0, x < a

(x – a) / (b –a), a ≤ x ≤ b

1, x > b

Step 2. Set F(X) = (X - a)/(b -a) = R

Step 3. Solving for X in terms of R yields

X = a + (b — a)R,

which agrees with Equation (5.5).

Weibull Distribution:

The weibull distribution was introduce for test the time to failure of the machine or electronic

components. The location of the parameters V is set to 0.

where α>0 and β>0 are the scale and shape of parameters.

Steps for Weibull distribution are as follows:

step 1: The cdf is given by

step2 :set f(x)=R

step 3:Solving for X in terms of R yields.

Empirical continuous distribution:

Respampling of data from the sample data in systamtic manner is called empirical continuos

distribution.

Step1:Arrange data for smallest to largest order of interval

x(i-1)<x<X(i) i=0,1,2,3….n

Step2:Compute probability 1/n

Step3:Compute cumulative probability i.e i/n where n is interval

step4:calculate a slope i.e

without frequency ai=x(i)-x(i-1)/(1/n)

with frequency ai= x(i)-x(i-1)/(c(i)-c(i-1) where c(i) is cumulative probability

2.1 Acceptance-Rejection technique

 Useful particularly when inverse cdf does not exist in closed form
 Illustration: To generate random variants, X ~ U(1/4, 1)
 Procedures:

Step 1: Generate a random number R ~ U [0, 1]

Step 2a: If R ≥ ¼, accept X=R.

Step 2b: If R < ¼, reject R, return to Step 1

 R does not have the desired distribution, but R conditioned (R’) on the event {R ³ ¼} does.

 Efficiency: Depends heavily on the ability to minimize the number of rejections.

2.1.1 Poisson Distribution A Poisson random variable, N, with mean a > 0 has pmf

 N can be interpreted as number of arrivals from a Poisson arrival process during one unit of time

• Then time between the arrivals in the process are exponentially distributed with rate α.

• Thus there is a relationship between the (discrete) Poisson distribution and the (continuous)

exponential distribution, namely

The procedure for generating a Poisson random variate, N, is given by the following steps:

Step 1: Set n = 0, and P = 1

Step 2: Generate a random number Rn+1 and let P = P. Rn+1

Step 3: If P < e-α, then accept N = n. Otherwise, reject current n,

increase n by one, and return to step 2

Example: Generate three Poisson variants with mean a =0.2 for the given Random number

0.4357,0.4146,0.8353,0.9952,0.8004

Solution:

Step 1.Set n = 0, P = 1.

tep 2.R1 = 0.4357, P = 1 • R1 = 0.4357.

Step 3. Since P = 0.4357 < e-b = 0.8187, accept N = 0. Repeat Above procedure

Gamma distribution:

Is to check the random variants are accepted or rejected based on

dependent sample data.

Steps 1: Refer the steps which given in problems.

	UNIT 5.pdf
	unit5.pdf
	shabrin1_0005.pdf
	ssss.pdf
	ssss_0001.pdf
	ssss_0002.pdf
	ssss_0003.pdf
	ssss_0004.pdf
	ssss_0005.pdf
	ssss_0006.pdf
	ssss_0007.pdf
	ssss_0008.pdf
	ssss_0009.pdf
	ssss_0010.pdf
	ssss_0011.pdf
	ssss_0012.pdf
	ssss_0013.pdf
	ssss_0014.pdf
	ssss_0015.pdf
	ssss_0016.pdf

